Spaces:
Sleeping
Sleeping
import gradio as gr | |
# import torch | |
from ultralyticsplus import YOLO, render_result | |
import cv2 | |
from email.mime.text import MIMEText | |
from email.mime.multipart import MIMEMultipart | |
from email.mime.base import MIMEBase | |
from email import encoders | |
import smtplib | |
import os | |
from twilio.rest import Client | |
sender_email = os.environ.get("sender_email") | |
receiver_email = os.environ.get("receiver_email") | |
sender_password = os.environ.get("sender_password") | |
smtp_port = 2525 | |
smtp_server = "smtp.gmail.com" | |
subject = "Accident detected" | |
classes: ['car', 'bike', 'person', 'car_car_accident', 'car_bike_accident', 'car_person_accident', 'bike_bike_accidnet', 'bike_person_accident', 'car_object_accident', 'bike_object_accident'] | |
def send_email(accident_type): | |
body = accident_type | |
msg = MIMEMultipart() | |
msg['From'] = sender_email | |
msg['To'] = receiver_email | |
msg['Subject'] = subject | |
msg.attach(MIMEText(body, 'plain')) | |
filename = "res.png" | |
folder = "./result/" | |
fullFileName = folder + filename | |
attachment = open(fullFileName, 'rb') | |
attachment_package = MIMEBase('application', 'octet-stream') | |
attachment_package.set_payload((attachment).read()) | |
encoders.encode_base64(attachment_package) | |
attachment_package.add_header('Content-Disposition', "attachment; filename= " + filename) | |
msg.attach(attachment_package) | |
text = msg.as_string() | |
print("Connecting to server") | |
gmail_server = smtplib.SMTP(smtp_server, smtp_port) | |
gmail_server.starttls() | |
gmail_server.login(sender_email, sender_password) | |
print("Successfully connected to server") | |
print() | |
print("Sending email to ", receiver_email) | |
gmail_server.sendmail(sender_email, receiver_email, text) | |
print("Email sent to ", receiver_email) | |
print() | |
gmail_server.quit() | |
def send_sms(accident_type): | |
# print(os.environ.get("account_sid")) | |
# print(os.environ.get("auth_token")) | |
# print(os.environ.get("my_twilio_number")) | |
# print(os.environ.get("receiver_number")) | |
# print(os.environ.get("sender_email")) | |
# print(os.environ.get("receiver_email")) | |
# print(os.environ.get("sender_password")) | |
account_sid = os.environ.get("account_sid") | |
auth_token = os.environ.get("auth_token") | |
my_twilio_number = os.environ.get("my_twilio_number") | |
receiver_number = os.environ.get("receiver_number") | |
# print(account_sid) | |
# print(auth_token) | |
# print(my_twilio_number) | |
# print(receiver_number) | |
# client = Client(account_sid, auth_token) | |
# message = client.messages.create(body=accident_type, | |
# from_=my_twilio_number, | |
# to=receiver_number) | |
print(accident_type) | |
def check_acc(box): | |
# return format(box.cls) | |
res_index_list = box.cls.tolist() | |
result = "" | |
for index in res_index_list: | |
if index ==3: | |
result = "car car accident detected" | |
break | |
elif index==4: | |
result = "car bike accident detected" | |
break | |
elif index==5: | |
result = "car person accident detected" | |
break | |
elif index==6: | |
result = "bike bike accident detected" | |
break | |
elif index==7: | |
result = "bike person accident detected" | |
break | |
elif index ==8: | |
result = "car object accident detected" | |
break | |
elif index == 9: | |
result = "bike object accident detected" | |
break | |
return result | |
def image_predict(image): | |
model_path = "best.pt" | |
model = YOLO(model_path) | |
results = model.predict(image, | |
conf = 0.4, | |
iou = 0.6, | |
imgsz = 640) | |
box = results[0].boxes | |
res = check_acc(box) | |
print("object Type: ", res) | |
render = render_result(model=model, image=image, result=results[0]) | |
# if res == "car car accident detected": | |
# cv2.imwrite("./result/res.png", render) | |
# print(render) | |
# if res == "car car accident detected": | |
# render.save("./result/res.png") | |
# # send_email(res) | |
# send_sms | |
if len(res) >0: | |
# render.save("./result/res.png") | |
send_sms(res) | |
return (res, render) | |
def extract_frames(video): | |
vidcap = cv2.VideoCapture(video) | |
vidcap = cv2.VideoCapture(video) | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
nof = 5 | |
frame_no = 0 | |
while vidcap.isOpened(): | |
res = "" | |
render = None | |
success, image = vidcap.read() | |
if success ==False: | |
break | |
if (frame_no*nof)%fps==0: | |
res, render = image_predict(image) | |
if len(res) >0: | |
return (res, render) | |
return ("", None) | |
def take_input(image, video): | |
if(video != None): | |
res = extract_frames(video) | |
else: | |
res = image_predict(image) | |
return res | |
with gr.Blocks(title="YOLOS Object Detection - ClassCat", css=".gradio-container {background:lightyellow;}") as demo: | |
gr.HTML('<h1>Yolo Object Detection</h1>') | |
gr.HTML("<br>") | |
with gr.Row(): | |
input_image = gr.Image(label="Input image") | |
input_video = gr.Video(label="Input video") | |
output_label = gr.Text(label="output label") | |
output_image = gr.Image(label="Output image") | |
gr.HTML("<br>") | |
send_btn = gr.Button("Detect") | |
gr.HTML("<br>") | |
send_btn.click(fn=take_input, inputs=[input_image, input_video], outputs=[output_label, output_image]) | |
demo.launch(debug=True) | |