Spaces:
Sleeping
Sleeping
yolov8 accident detector
Browse files
app.py
CHANGED
@@ -25,50 +25,18 @@ def yolov8_func(image):
|
|
25 |
|
26 |
render = render_result(model=model, image=image, result=results[0])
|
27 |
|
28 |
-
return render, box.cls
|
29 |
-
|
30 |
-
# inputs = [
|
31 |
-
# gr.inputs.Image(type="filepath", label="Input Image"),
|
32 |
-
# gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
|
33 |
-
# gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
|
34 |
-
# gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="Iou Threshold")
|
35 |
-
# ]
|
36 |
-
|
37 |
-
# gr.HTML
|
38 |
-
# outputs = gr.outputs.Image(type="filepath", label="Output Image")
|
39 |
-
|
40 |
-
# yolo_app = gr.Interface(
|
41 |
-
# fn=yolov8_func,
|
42 |
-
# inputs=inputs,
|
43 |
-
# outputs=outputs,
|
44 |
-
# title="Accident detector",
|
45 |
-
# )
|
46 |
-
|
47 |
-
# yolo_app.launch(debug=True, enable_queue=True)
|
48 |
|
49 |
with gr.Blocks(title="YOLOS Object Detection - ClassCat", css=".gradio-container {background:lightyellow;}") as demo:
|
50 |
gr.HTML('<h1>Yolo Object Detection</h1>')
|
51 |
-
#gr.HTML("<h4>supported objects are [aeroplane,bicycle,bird,boat,bottle,bus,car,cat,chair,cow,diningtable,dog,horse,motorbike,person,pottedplant,sheep,sofa,train,tvmonitor]</h4>")
|
52 |
gr.HTML("<br>")
|
53 |
with gr.Row():
|
54 |
input_image = gr.Image(label="Input image", type="pil")
|
55 |
output_image = gr.Image(label="Output image", type="pil")
|
56 |
output_label = gr.Text(label="output label")
|
57 |
gr.HTML("<br>")
|
58 |
-
#gr.HTML("<h4>object centre detection threshold means the object centre will be considered a new object if it's value is above threshold</h4>")
|
59 |
-
#gr.HTML("<p>less means more objects</p>")
|
60 |
-
#gr.HTML("<h4>bounding box threshold is IOU value threshold. If intersection/union area of two bounding boxes are greater than threshold value the one box will be suppressed</h4>")
|
61 |
-
#gr.HTML("<p>more means more bounding boxes<p>")
|
62 |
-
#gr.HTML("<br>")
|
63 |
-
|
64 |
-
#obj_threshold = gr.Slider(0, 1.0, value=0.2, label=' object centre detection threshold')
|
65 |
-
#gr.HTML("<br>")
|
66 |
-
#bb_threshold = gr.Slider(0, 1.0, value=0.3, label=' bounding box draw threshold')
|
67 |
-
#gr.HTML("<br>")
|
68 |
-
|
69 |
send_btn = gr.Button("Detect")
|
70 |
gr.HTML("<br>")
|
71 |
-
#gr.Examples(['./samples/out_1.jpg'], inputs=input_image)
|
72 |
|
73 |
send_btn.click(fn=yolov8_func, inputs=[input_image], outputs=[output_image, output_label])
|
74 |
|
|
|
25 |
|
26 |
render = render_result(model=model, image=image, result=results[0])
|
27 |
|
28 |
+
return (render, box.cls)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
with gr.Blocks(title="YOLOS Object Detection - ClassCat", css=".gradio-container {background:lightyellow;}") as demo:
|
31 |
gr.HTML('<h1>Yolo Object Detection</h1>')
|
|
|
32 |
gr.HTML("<br>")
|
33 |
with gr.Row():
|
34 |
input_image = gr.Image(label="Input image", type="pil")
|
35 |
output_image = gr.Image(label="Output image", type="pil")
|
36 |
output_label = gr.Text(label="output label")
|
37 |
gr.HTML("<br>")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
send_btn = gr.Button("Detect")
|
39 |
gr.HTML("<br>")
|
|
|
40 |
|
41 |
send_btn.click(fn=yolov8_func, inputs=[input_image], outputs=[output_image, output_label])
|
42 |
|