File size: 5,888 Bytes
c614b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from __future__ import annotations

import os
import os.path as osp
from collections import defaultdict
import time
from mmpose.apis.inference import batch_inference_pose_model

import numpy as np
import torch
import torch.nn as nn
import scipy.signal as signal

from ultralytics import YOLO
from mmpose.apis import (
    init_pose_model,
    get_track_id,
    vis_pose_result,
)

ROOT_DIR = osp.abspath(f"{__file__}/../../")
VIT_DIR = osp.join(ROOT_DIR, "third-party/ViTPose")

VIS_THRESH = 0.5
BBOX_CONF = 0.5
TRACKING_THR = 0.1
MINIMUM_FRMAES = 15
MINIMUM_JOINTS = 6

class DetectionModel(object):
    def __init__(self, pose_model_ckpt, device, with_tracker=True):
        
        # ViTPose
        pose_model_cfg = osp.join(VIT_DIR, 'configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/coco-wholebody/ViTPose_huge_wholebody_256x192.py')
        #'vitpose-h-multi-coco.pth')
        self.pose_model = init_pose_model(pose_model_cfg, pose_model_ckpt, device=device)
        
        # YOLO
        bbox_model_ckpt = osp.join(ROOT_DIR, 'checkpoints', 'yolov8x.pt')
        if with_tracker:
            self.bbox_model = YOLO(bbox_model_ckpt)
        else:
            self.bbox_model = None
    
        self.device = device
        self.initialize_tracking()
        
    def initialize_tracking(self, ):
        self.next_id = 0
        self.frame_id = 0
        self.pose_results_last = []
        self.tracking_results = {
            'id': [],
            'frame_id': [],
            'bbox': [],
        }
        
    def xyxy_to_cxcys(self, bbox, s_factor=1.05):
        cx, cy = bbox[[0, 2]].mean(), bbox[[1, 3]].mean()
        scale = max(bbox[2] - bbox[0], bbox[3] - bbox[1]) / 200 * s_factor
        return np.array([[cx, cy, scale]])
        
    def compute_bboxes_from_keypoints(self, s_factor=1.2):
        X = self.tracking_results['keypoints'].copy()
        mask = X[..., -1] > VIS_THRESH

        bbox = np.zeros((len(X), 3))
        for i, (kp, m) in enumerate(zip(X, mask)):
            bb = [kp[m, 0].min(), kp[m, 1].min(),
                  kp[m, 0].max(), kp[m, 1].max()]
            cx, cy = [(bb[2]+bb[0])/2, (bb[3]+bb[1])/2]
            bb_w = bb[2] - bb[0]
            bb_h = bb[3] - bb[1]
            s = np.stack((bb_w, bb_h)).max()
            bb = np.array((cx, cy, s))
            bbox[i] = bb
        
        bbox[:, 2] = bbox[:, 2] * s_factor / 200.0
        self.tracking_results['bbox'] = bbox
    
    def compute_bbox(self, img):
        bboxes = self.bbox_model.predict(
            img, device=self.device, classes=0, conf=BBOX_CONF, save=False, verbose=False
        )[0].boxes.xyxy.detach().cpu().numpy()

        bboxes = [{'bbox': bbox} for bbox in bboxes]
        imgs = [img for _ in range(len(bboxes))]
        return bboxes, imgs
    
    def batch_detection(self, bboxes, imgs, batch_size=32):
        all_poses = []
        all_bboxes = []
        for i in range(0, len(bboxes), batch_size):
            poses, bbox_xyxy = batch_inference_pose_model(
                self.pose_model,
                imgs[i:i+batch_size],
                bboxes[i:i+batch_size],
                return_heatmap=False)
            all_poses.append(poses)
            all_bboxes.append(bbox_xyxy)
        all_poses = np.concatenate(all_poses)
        all_bboxes = np.concatenate(all_bboxes)
        return all_poses, all_bboxes
        
    def track(self, img, fps, length):
        # bbox detection
        bboxes = self.bbox_model.predict(
            img, device=self.device, classes=0, conf=BBOX_CONF, save=False, verbose=False
        )[0].boxes.xyxy.detach().cpu().numpy()

        pose_results = [{'bbox': bbox} for bbox in bboxes]
        
       
        pose_results, self.next_id = get_track_id(
            pose_results,
            self.pose_results_last,
            self.next_id,
            use_oks=False,
            tracking_thr=TRACKING_THR,
            use_one_euro=True,
            fps=fps)
        
        for pose_result in pose_results:
            
            _id = pose_result['track_id']
            xyxy = pose_result['bbox']
            bbox = xyxy# self.xyxy_to_cxcys(xyxy)
            
            self.tracking_results['id'].append(_id)
            self.tracking_results['frame_id'].append(self.frame_id)
            self.tracking_results['bbox'].append(bbox)
        
        self.frame_id += 1
        self.pose_results_last = pose_results
    
    def process(self, fps):

        for key in ['id', 'frame_id', 'bbox']:
            self.tracking_results[key] = np.array(self.tracking_results[key])
        #self.compute_bboxes_from_keypoints()
            
        output = defaultdict(lambda: defaultdict(list))
        ids = np.unique(self.tracking_results['id'])

        for _id in ids:
            idxs = np.where(self.tracking_results['id'] == _id)[0]

            for key, val in self.tracking_results.items():
                if key == 'id': continue
                output[_id][key] = val[idxs]

        # Smooth bounding box detection
        ids = list(output.keys())
        for _id in ids:
            if len(output[_id]['bbox']) < MINIMUM_FRMAES:
                del output[_id]
                continue
            
            kernel = int(int(fps/2) / 2) * 2 + 1
            smoothed_bbox = np.array([signal.medfilt(param, kernel) for param in output[_id]['bbox'].T]).T
            output[_id]['bbox'] = smoothed_bbox
        
        return output
    
    def visualize(self, img, pose_results):
        vis_img = vis_pose_result(
            self.pose_model,
            img,
            pose_results,
            dataset=self.pose_model.cfg.data['test']['type'],
            dataset_info = None, #self.pose_model.cfg.data['test'].get('dataset_info', None),
            kpt_score_thr=0.3,
            radius=4,
            thickness=1,
            show=False
        )
        return vis_img