File size: 8,294 Bytes
c614b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# Multi-HMR
# Copyright (c) 2024-present NAVER Corp.
# CC BY-NC-SA 4.0 license

import torch
from torch import nn
from torch import nn
import smplx
import torch
import numpy as np
import pose_utils
from pose_utils import inverse_perspective_projection, perspective_projection
import roma
import pickle
import os
from pose_utils.constants_service import SMPLX_DIR
from pose_utils.rot6d import rotation_6d_to_matrix
from smplx.lbs import vertices2joints


class SMPL_Layer(nn.Module):
    """
    Extension of the SMPL Layer with information about the camera for (inverse) projection the camera plane.
    """

    def __init__(
        self,
        smpl_dir,
        type="smplx",
        gender="neutral",
        num_betas=10,
        kid=False,
        person_center=None,
        *args,
        **kwargs,
    ):
        super().__init__()

        # Args
        assert type == "smplx"
        self.type = type
        self.kid = kid
        self.num_betas = num_betas
        self.bm_x = smplx.create(
            smpl_dir, "smplx", gender=gender, use_pca=False, flat_hand_mean=True, num_betas=num_betas
        )

        # Primary keypoint - root
        self.joint_names = eval(f"pose_utils.get_{self.type}_joint_names")()
        self.person_center = person_center
        self.person_center_idx = None
        if self.person_center is not None:
            self.person_center_idx = self.joint_names.index(self.person_center)

    def forward(
        self,
        pose,
        shape,
        loc,
        dist,
        transl,
        K,
        expression=None,  # facial expression
        rot6d=False,
        j_regressor=None,
    ):
        """
        Args:
            - pose: pose of the person in axis-angle - torch.Tensor [bs,24,3]
            - shape: torch.Tensor [bs,10]
            - loc: 2D location of the pelvis in pixel space - torch.Tensor [bs,2]
            - dist: distance of the pelvis from the camera in m - torch.Tensor [bs,1]
        Return:
            - dict containing a bunch of useful information about each person
        """

        if loc is not None and dist is not None:
            assert pose.shape[0] == shape.shape[0] == loc.shape[0] == dist.shape[0]
        POSE_TYPE_LENGTH = 6 if rot6d else 3
        if self.type == "smpl":
            assert len(pose.shape) == 3 and list(pose.shape[1:]) == [24, POSE_TYPE_LENGTH]
        elif self.type == "smplx":
            assert len(pose.shape) == 3 and list(pose.shape[1:]) == [
                53,
                POSE_TYPE_LENGTH,
            ]  # taking root_orient, body_pose, lhand, rhan and jaw for the moment
        else:
            raise NameError
        assert len(shape.shape) == 2 and (
            list(shape.shape[1:]) == [self.num_betas] or list(shape.shape[1:]) == [self.num_betas + 1]
        )
        if loc is not None and dist is not None:
            assert len(loc.shape) == 2 and list(loc.shape[1:]) == [2]
            assert len(dist.shape) == 2 and list(dist.shape[1:]) == [1]

        bs = pose.shape[0]

        out = {}

        # No humans
        if bs == 0:
            return {}

        # Low dimensional parameters
        kwargs_pose = {
            "betas": shape,
        }
        kwargs_pose["global_orient"] = self.bm_x.global_orient.repeat(bs, 1)
        kwargs_pose["body_pose"] = pose[:, 1:22].flatten(1)
        kwargs_pose["left_hand_pose"] = pose[:, 22:37].flatten(1)
        kwargs_pose["right_hand_pose"] = pose[:, 37:52].flatten(1)
        kwargs_pose["jaw_pose"] = pose[:, 52:53].flatten(1)

        if expression is not None:
            kwargs_pose["expression"] = expression.flatten(1)  # [bs,10]
        else:
            kwargs_pose["expression"] = self.bm_x.expression.repeat(bs, 1)

        # default - to be generalized
        kwargs_pose["leye_pose"] = self.bm_x.leye_pose.repeat(bs, 1)
        kwargs_pose["reye_pose"] = self.bm_x.reye_pose.repeat(bs, 1)
        # kwargs_pose['pose2rot'] = not rot6d
        # Forward using the parametric 3d model SMPL-X layer
        output = self.bm_x(pose2rot=not rot6d, **kwargs_pose)
        verts = output.vertices
        j3d = output.joints  # 45 joints

        if rot6d:
            R = rotation_6d_to_matrix(pose[:, 0])
        else:
            R = roma.rotvec_to_rotmat(pose[:, 0])

        # Apply global orientation on 3D points
        pelvis = j3d[:, [0]]
        j3d = (R.unsqueeze(1) @ (j3d - pelvis).unsqueeze(-1)).squeeze(-1)

        # Apply global orientation on 3D points - bis
        verts = (R.unsqueeze(1) @ (verts - pelvis).unsqueeze(-1)).squeeze(-1)

        # Location of the person in 3D
        if transl is None:
            if K.dtype == torch.float16:
                # because of torch.inverse - not working with float16 at the moment
                transl = inverse_perspective_projection(
                    loc.unsqueeze(1).float(), K.float(), dist.unsqueeze(1).float()
                )[:, 0]
                transl = transl.half()
            else:
                transl = inverse_perspective_projection(loc.unsqueeze(1), K, dist.unsqueeze(1))[:, 0]

        # Updating transl if we choose a certain person center
        transl_up = transl.clone()

        # Definition of the translation depend on the args: 1) vanilla SMPL - 2) computed from a given joint
        if self.person_center_idx is None:
            # Add pelvis to transl - standard way for SMPLX layer
            transl_up = transl_up + pelvis[:, 0]
        else:
            # Center around the joint because teh translation is computed from this joint
            person_center = j3d[:, [self.person_center_idx]]
            verts = verts - person_center
            j3d = j3d - person_center

        # Moving into the camera coordinate system
        j3d_cam = j3d + transl_up.unsqueeze(1)
        verts_cam = verts + transl_up.unsqueeze(1)

        # Projection in camera plane
        if j_regressor is not None:
            # for smplify
            j3d_cam = vertices2joints(j_regressor, verts_cam)
        j2d = perspective_projection(j3d_cam, K)
        v2d = perspective_projection(verts_cam, K)

        out.update(
            {
                "v3d": verts_cam,  # in 3d camera space
                "j3d": j3d_cam,  # in 3d camera space
                "j2d": j2d,
                "v2d": v2d,
                "transl": transl,  # translation of the primary keypoint
                "transl_pelvis": transl.unsqueeze(1) - person_center - pelvis, # root=pelvis
                "j3d_world": output.joints,
            }
        )

        return out

    def forward_local(self, pose, shape):
        N, J, L = pose.shape
        if N < 1:
            return None
        kwargs_pose = {
            "betas": shape,
        }
        if J == 53:
            kwargs_pose["global_orient"] = self.bm_x.global_orient.repeat(N, 1)
            kwargs_pose["body_pose"] = pose[:, 1:22].flatten(1)
            kwargs_pose["left_hand_pose"] = pose[:, 22:37].flatten(1)
            kwargs_pose["right_hand_pose"] = pose[:, 37:52].flatten(1)
            kwargs_pose["jaw_pose"] = pose[:, 52:53].flatten(1)
        elif J==55:
            kwargs_pose["global_orient"] = self.bm_x.global_orient.repeat(N, 1)
            kwargs_pose["body_pose"] = pose[:, 1:22].flatten(1)
            kwargs_pose["left_hand_pose"] = pose[:, 25:40].flatten(1)
            kwargs_pose["right_hand_pose"] = pose[:, 40:55].flatten(1)
            kwargs_pose["jaw_pose"] = pose[:, 22:23].flatten(1)
        else:
            raise ValueError(f"pose dim error, should be 53 or 55, but got {J}")
        kwargs_pose["expression"] = self.bm_x.expression.repeat(N, 1)

        # default - to be generalized
        kwargs_pose["leye_pose"] = self.bm_x.leye_pose.repeat(N, 1)
        kwargs_pose["reye_pose"] = self.bm_x.reye_pose.repeat(N, 1)

        output = self.bm_x(**kwargs_pose)
        return output
    def convert_standard_pose(self, poses):
        # pose: N, J, 3
        n = poses.shape[0]
        poses = torch.cat(
            [
                poses[:, :22],
                poses[:, 52:53],
                self.bm_x.leye_pose.repeat(n, 1, 1),
                self.bm_x.reye_pose.repeat(n, 1, 1),
                poses[:, 22:52],
            ],
            dim=1,
        )
        return poses