File size: 28,497 Bytes
c614b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
# Multi-HMR
# Copyright (c) 2024-present NAVER Corp.
# CC BY-NC-SA 4.0 license

import os
import sys

sys.path.append("./")
sys.path.append("./engine")
sys.path.append("./engine/pose_estimation")
import copy

import einops
import numpy as np
import roma
import torch
import torch.nn as nn
from blocks import (
    Dinov2Backbone,
    FourierPositionEncoding,
    SMPL_Layer,
    TransformerDecoder,
)
from pose_utils import (
    inverse_perspective_projection,
    pad_to_max,
    rebatch,
    rot6d_to_rotmat,
    undo_focal_length_normalization,
    undo_log_depth,
    unpatch,
)
from torch import nn


def unravel_index(index, shape):
    out = []
    for dim in reversed(shape):
        out.append(index % dim)
        index = index // dim
    return tuple(reversed(out))


class Model(nn.Module):
    """A ViT backbone followed by a "HPH" head (stack of cross attention layers with queries corresponding to detected humans.)"""

    def __init__(
        self,
        backbone="dinov2_vitb14",
        pretrained_backbone=False,
        img_size=896,
        camera_embedding="geometric",  # geometric encodes viewing directions with fourrier encoding
        camera_embedding_num_bands=16,  # increase the size of the camera embedding
        camera_embedding_max_resolution=64,  # does not increase the size of the camera embedding
        nearness=True,  # regress log(1/z)
        xat_depth=2,  # number of cross attention block (SA, CA, MLP) in the HPH head.
        xat_num_heads=8,  # Number of attention heads
        dict_smpl_layer=None,
        person_center="head",
        clip_dist=True,
        num_betas=10,
        smplx_dir=None,
        *args,
        **kwargs,
    ):
        super().__init__()
        # Save options
        self.img_size = img_size
        self.nearness = nearness
        self.clip_dist = (clip_dist,)
        self.xat_depth = xat_depth
        self.xat_num_heads = xat_num_heads
        self.num_betas = num_betas
        self.output_mesh = True

        # Setup backbone
        self.backbone = Dinov2Backbone(backbone, pretrained=pretrained_backbone)
        self.embed_dim = self.backbone.embed_dim
        self.patch_size = self.backbone.patch_size
        assert self.img_size % self.patch_size == 0, "Invalid img size"

        # Camera instrinsics
        self.fovn = 60
        self.camera_embedding = camera_embedding
        self.camera_embed_dim = 0
        if self.camera_embedding is not None:
            if not self.camera_embedding == "geometric":
                raise NotImplementedError(
                    "Only geometric camera embedding is implemented"
                )
            self.camera = FourierPositionEncoding(
                n=3,
                num_bands=camera_embedding_num_bands,
                max_resolution=camera_embedding_max_resolution,
            )
            # import pdb
            # pdb.set_trace()
            self.camera_embed_dim = self.camera.channels

        # Heads - Detection
        self.mlp_classif = regression_mlp(
            [self.embed_dim, self.embed_dim, 1]
        )  # bg or human

        # Heads - Human properties
        self.mlp_offset = regression_mlp([self.embed_dim, self.embed_dim, 2])  # offset

        # SMPL Layers
        self.nrot = 53
        dict_smpl_layer = {
            "neutral": {
                10: SMPL_Layer(
                    smplx_dir,
                    type="smplx",
                    gender="neutral",
                    num_betas=10,
                    kid=False,
                    person_center=person_center,
                ),
                11: SMPL_Layer(
                    smplx_dir,
                    type="smplx",
                    gender="neutral",
                    num_betas=11,
                    kid=False,
                    person_center=person_center,
                ),
            }
        }
        _moduleDict = []
        for k, _smpl_layer in dict_smpl_layer.items():
            for x, y in _smpl_layer.items():
                _moduleDict.append([f"{k}_{x}", copy.deepcopy(y)])
        self.smpl_layer = nn.ModuleDict(_moduleDict)

        self.x_attention_head = HPH(
            num_body_joints=self.nrot - 1,  # 23,
            context_dim=self.embed_dim + self.camera_embed_dim,
            dim=1024,
            depth=self.xat_depth,
            heads=self.xat_num_heads,
            mlp_dim=1024,
            dim_head=32,
            dropout=0.0,
            emb_dropout=0.0,
            at_token_res=self.img_size // self.patch_size,
            num_betas=self.num_betas,
            smplx_dir=smplx_dir,
        )

        print(f"person center is {person_center}")

    # set whether do filter
    def set_filter(self, apply_filter):
        self.apply_filter = apply_filter

    def detection(
        self,
        z,
        nms_kernel_size,
        det_thresh,
        N,
        idx=None,
        max_dist=None,
        is_training=False,
    ):
        """Detection score on the entire low res image"""
        scores = _sigmoid(self.mlp_classif(z))  # per token detection score.
        # Restore Height and Width dimensions.
        scores = unpatch(
            scores, patch_size=1, c=scores.shape[2], img_size=int(np.sqrt(N))
        )
        pseudo_idx = idx
        if not is_training:
            if (
                nms_kernel_size > 1
            ):  # Easy nms: supress adjacent high scores with max pooling.
                scores = _nms(scores, kernel=nms_kernel_size)
            _scores = torch.permute(scores, (0, 2, 3, 1))

            # Binary decision (keep confident detections)
            idx = apply_threshold(det_thresh, _scores)
            if pseudo_idx is not None:
                max_dist = 4 if max_dist is None else max_dist
                mask = (torch.abs(idx[1] - pseudo_idx[1]) <= max_dist) & (
                    torch.abs(idx[2] - pseudo_idx[2]) <= max_dist
                )
                idx_num = torch.sum(mask)
                if idx_num < 1:
                    top = torch.clamp(
                        pseudo_idx[1] - max_dist, min=0, max=_scores.shape[1] - 1
                    )
                    bottom = torch.clamp(
                        pseudo_idx[1] + max_dist, min=0, max=_scores.shape[1]
                    )
                    left = torch.clamp(
                        pseudo_idx[2] - max_dist, min=0, max=_scores.shape[2] - 1
                    )
                    right = torch.clamp(
                        pseudo_idx[2] + max_dist, min=0, max=_scores.shape[2]
                    )

                    neigborhoods = _scores[:, top:bottom, left:right, :]

                    idx = torch.argmax(neigborhoods)
                    try:
                        idx = unravel_index(idx, neigborhoods.shape)
                    except Exception as e:
                        print(pseudo_idx)
                        raise e
                    idx = (
                        pseudo_idx[0],
                        idx[1] + pseudo_idx[1] - max_dist,
                        idx[2] + pseudo_idx[2] - max_dist,
                        pseudo_idx[3],
                    )

                elif idx_num > 1:  # TODO

                    idx = (idx[0][mask], idx[1][mask], idx[2][mask], idx[3][mask])
                else:
                    idx = (idx[0][mask], idx[1][mask], idx[2][mask], idx[3][mask])
            # elif bbox is not None:
            #     mask = (idx[1] >= bbox[1]) & (idx[1] >= bbox[3]) & (idx[2] >= bbox[0]) & (idx[2] <= bbox[2])
            #     idx_num = torch.sum(mask)
            #     if idx_num < 1:
            #         top = torch.clamp(bbox[1], min=0, max=_scores.shape[1]-1)
            #         bottom = torch.clamp(bbox[3], min=0, max=_scores.shape[1]-1)
            #         left = torch.clamp(bbox[0], min=0, max=_scores.shape[2]-1)
            #         right = torch.clamp(bbox[2], min=0, max=_scores.shape[2]-1)

            #         neigborhoods = _scores[:, top:bottom, left:right, :]
            #         idx = torch.argmax(neigborhoods)
            #         try:
            #             idx = unravel_index(idx, neigborhoods.shape)
            #         except Exception as e:
            #             print(pseudo_idx)
            #             raise e

            #         idx = (idx[0], idx[1] + top, idx[2] + left, idx[3])
            #     else:
            #         idx = (idx[0][mask], idx[1][mask], idx[2][mask], idx[3][mask])
        else:
            assert idx is not None  # training time
        # Scores
        scores_detected = scores[
            idx[0], idx[3], idx[1], idx[2]
        ]  # scores of the detected humans only

        scores = torch.permute(scores, (0, 2, 3, 1))
        return scores, scores_detected, idx

    def embedd_camera(self, K, z):
        """Embed viewing directions using fourrier encoding."""
        bs = z.shape[0]
        _h, _w = list(z.shape[-2:])
        points = (
            torch.stack(
                [
                    torch.arange(0, _h, 1).reshape(-1, 1).repeat(1, _w),
                    torch.arange(0, _w, 1).reshape(1, -1).repeat(_h, 1),
                ],
                -1,
            )
            .to(z.device)
            .float()
        )  # [h,w,2]
        points = (
            points * self.patch_size + self.patch_size // 2
        )  # move to pixel space - we give the pixel center of each token
        points = points.reshape(1, -1, 2).repeat(bs, 1, 1)  # (bs, N, 2): 2D points
        distance = torch.ones(bs, points.shape[1], 1).to(
            K.device
        )  # (bs, N, 1): distance in the 3D world
        rays = inverse_perspective_projection(points, K, distance)  # (bs, N, 3)
        rays_embeddings = self.camera(pos=rays)

        # Repeat for each element of the batch
        z_K = rays_embeddings.reshape(bs, _h, _w, self.camera_embed_dim)  # [bs,h,w,D]
        return z_K

    def to_euclidean_dist(self, x, dist, _K):
        # Focal length normalization
        focal = _K[:, [0], [0]]
        dist = undo_focal_length_normalization(
            dist, focal, fovn=self.fovn, img_size=x.shape[-1]
        )
        # log space
        if self.nearness:
            dist = undo_log_depth(dist)

        # Clamping
        if self.clip_dist:
            dist = torch.clamp(dist, 0, 50)

        return dist

    def get_smpl(self):
        return self.smpl_layer[f"neutral_{self.num_betas}"]

    def generate_meshes(self, out):
        """
        Generates meshes for each person detected in the image.

        This function processes the output of the detection model, which includes rotation vectors,
        shapes, locations, distances, expressions, and other information related to SMPL-X parameters.

        Parameters:
        out (dict): A dictionary containing detection results and SMPL-X related parameters.

        Returns:
        list: A list of dictionaries, each containing information about a detected person's mesh.
        """
        # Neutral
        persons = []
        rotvec, shape, loc, dist, expression, K_det = (
            out["rotvec"],
            out["shape"],
            out["loc"],
            out["dist"],
            out["expression"],
            out["K_det"],
        )
        scores_det = out["scores_det"]
        idx = out["idx"]
        smpl_out = self.smpl_layer[f"neutral_{self.num_betas}"](
            rotvec, shape, loc, dist, None, K=K_det, expression=expression
        )
        out.update(smpl_out)

        for i in range(idx[0].shape[0]):
            person = {
                # Detection
                "scores": scores_det[i],  # detection scores
                "loc": out["loc"][i],  # 2d pixel location of the primary keypoints
                # SMPL-X params
                "transl": out["transl"][i],  # from the primary keypoint i.e. the head
                "transl_pelvis": out["transl_pelvis"][i],  # of the pelvis joint
                "rotvec": out["rotvec"][i],
                "expression": out["expression"][i],
                "shape": out["shape"][i],
                # SMPL-X meshs
                "v3d": out["v3d"][i],
                "j3d": out["j3d"][i],
                "j2d": out["j2d"][i],
            }
            persons.append(person)

        return persons

    def forward(
        self,
        x,
        idx=None,
        max_dist=None,
        det_thresh=0.3,
        nms_kernel_size=3,
        K=None,
        is_training=False,
        *args,
        **kwargs,
    ):
        """
        Forward pass of the model and compute the loss according to the groundtruth
        Args:
            - x: RGB image - [bs,3,224,224]
            - idx: GT location of persons - tuple of 3 tensor of shape [p]
            - idx_j2d: GT location of 2d-kpts for each detected humans - tensor of shape [bs',14,2] - location in pixel space
        Return:
            - y: [bs,D,16,16]
        """
        persons = []
        out = {}

        # Feature extraction
        z = self.backbone(x)
        B, N, C = z.size()  # [bs,256,768]

        # Detection
        scores, scores_det, idx = self.detection(
            z,
            nms_kernel_size=nms_kernel_size,
            det_thresh=det_thresh,
            N=N,
            idx=idx,
            max_dist=max_dist,
            is_training=is_training,
        )
        if torch.any(scores_det < 0.1):
            return persons
        if len(idx[1]) == 0 and not is_training:
            # no humans detected in the frame
            return persons

        # Map of Dense Feature
        z = unpatch(
            z, patch_size=1, c=z.shape[2], img_size=int(np.sqrt(N))
        )  # [bs,D,16,16]
        z_all = z

        # Extract the 'central' features
        z = torch.reshape(
            z, (z.shape[0], 1, z.shape[1] // 1, z.shape[2], z.shape[3])
        )  # [bs,stack_K,D,16,16]
        z_central = z[idx[0], idx[3], :, idx[1], idx[2]]  # dense vectors

        # 2D offset regression
        offset = self.mlp_offset(z_central)

        # Camera instrincs
        K_det = K[idx[0]]  # cameras for detected person
        z_K = self.embedd_camera(K, z)  # Embed viewing directions.
        z_central = torch.cat(
            [z_central, z_K[idx[0], idx[1], idx[2]]], 1
        )  # Add to query tokens.
        z_all = torch.cat(
            [z_all, z_K.permute(0, 3, 1, 2)], 1
        )  # for the cross-attention only
        z = torch.cat([z, z_K.permute(0, 3, 1, 2).unsqueeze(1)], 2)

        # Distance for estimating the 3D location in 3D space
        loc = torch.stack([idx[2], idx[1]]).permute(
            1, 0
        )  # Moving from higher resolution the location of the pelvis
        loc = (loc + 0.5 + offset) * self.patch_size

        # SMPL parameter regression
        kv = z_all[
            idx[0]
        ]  # retrieving dense features associated to each central vector
        pred_smpl_params, pred_cam = self.x_attention_head(
            z_central, kv, idx_0=idx[0], idx_det=idx
        )

        # Get outputs from the SMPL layer.
        shape = pred_smpl_params["betas"]
        rotmat = torch.cat(
            [pred_smpl_params["global_orient"], pred_smpl_params["body_pose"]], 1
        )
        expression = pred_smpl_params["expression"]
        rotvec = roma.rotmat_to_rotvec(rotmat)

        # Distance
        dist = pred_cam[:, 0][:, None]
        out["dist_postprocessed"] = (
            dist  # before applying any post-processing such as focal length normalization, inverse or log
        )
        dist = self.to_euclidean_dist(x, dist, K_det)

        # Populate output dictionnary
        out.update(
            {
                "scores": scores,
                "offset": offset,
                "dist": dist,
                "expression": expression,
                "rotmat": rotmat,
                "shape": shape,
                "rotvec": rotvec,
                "loc": loc,
            }
        )

        assert (
            rotvec.shape[0] == shape.shape[0] == loc.shape[0] == dist.shape[0]
        ), "Incoherent shapes"

        if not self.output_mesh:
            out.update(
                {
                    "K_det": K_det,
                    "scores_det": scores_det,
                    "idx": idx,
                }
            )
            return out

        # Neutral
        smpl_out = self.smpl_layer[f"neutral_{self.num_betas}"](
            rotvec, shape, loc, dist, None, K=K_det, expression=expression
        )
        out.update(smpl_out)

        # Return
        if is_training:
            return out
        else:
            # Populate a dictionnary for each person
            for i in range(idx[0].shape[0]):
                person = {
                    # Detection
                    "scores": scores_det[i],  # detection scores
                    "loc": out["loc"][i],  # 2d pixel location of the primary keypoints
                    # SMPL-X params
                    "transl": out["transl"][
                        i
                    ],  # from the primary keypoint i.e. the head
                    "transl_pelvis": out["transl_pelvis"][i],  # of the pelvis joint
                    "rotvec": out["rotvec"][i],
                    "expression": out["expression"][i],
                    "shape": out["shape"][i],
                    # SMPL-X meshs
                    "v3d": out["v3d"][i],
                    "j3d": out["j3d"][i],
                    "j2d": out["j2d"][i],
                    "dist": out["dist"][i],
                    "offset": out["offset"][i],
                }
                persons.append(person)

            return persons


class HPH(nn.Module):
    """Cross-attention based SMPL Transformer decoder

    Code modified from:
    https://github.com/shubham-goel/4D-Humans/blob/a0def798c7eac811a63c8220fcc22d983b39785e/hmr2/models/heads/smpl_head.py#L17
    https://github.com/shubham-goel/4D-Humans/blob/a0def798c7eac811a63c8220fcc22d983b39785e/hmr2/models/components/pose_transformer.py#L301
    """

    def __init__(
        self,
        num_body_joints=52,
        context_dim=1280,
        dim=1024,
        depth=2,
        heads=8,
        mlp_dim=1024,
        dim_head=64,
        dropout=0.0,
        emb_dropout=0.0,
        at_token_res=32,
        num_betas=10,
        smplx_dir=None,
    ):
        super().__init__()

        self.joint_rep_type, self.joint_rep_dim = "6d", 6
        self.num_body_joints = num_body_joints
        self.nrot = self.num_body_joints + 1

        npose = self.joint_rep_dim * (self.num_body_joints + 1)
        self.npose = npose

        self.depth = (depth,)
        self.heads = (heads,)
        self.res = at_token_res
        self.input_is_mean_shape = True
        _context_dim = context_dim  # for the central features
        self.num_betas = num_betas
        assert num_betas in [10, 11]

        # Transformer Decoder setup.
        # Based on https://github.com/shubham-goel/4D-Humans/blob/8830bb330558eea2395b7f57088ef0aae7f8fa22/hmr2/configs_hydra/experiment/hmr_vit_transformer.yaml#L35
        transformer_args = dict(
            num_tokens=1,
            token_dim=(
                (npose + self.num_betas + 3 + _context_dim)
                if self.input_is_mean_shape
                else 1
            ),
            dim=dim,
            depth=depth,
            heads=heads,
            mlp_dim=mlp_dim,
            dim_head=dim_head,
            dropout=dropout,
            emb_dropout=emb_dropout,
            context_dim=context_dim,
        )
        self.transformer = TransformerDecoder(**transformer_args)

        dim = transformer_args["dim"]

        # Final decoders to regress targets
        self.decpose, self.decshape, self.deccam, self.decexpression = [
            nn.Linear(dim, od) for od in [npose, num_betas, 3, 10]
        ]

        # Register bufffers for the smpl layer.
        self.set_smpl_init(smplx_dir)

        # Init learned embeddings for the cross attention queries
        self.init_learned_queries(context_dim)

    def init_learned_queries(self, context_dim, std=0.2):
        """Init learned embeddings for queries"""
        self.cross_queries_x = nn.Parameter(torch.zeros(self.res, context_dim))
        torch.nn.init.normal_(self.cross_queries_x, std=std)

        self.cross_queries_y = nn.Parameter(torch.zeros(self.res, context_dim))
        torch.nn.init.normal_(self.cross_queries_y, std=std)

        self.cross_values_x = nn.Parameter(torch.zeros(self.res, context_dim))
        torch.nn.init.normal_(self.cross_values_x, std=std)

        self.cross_values_y = nn.Parameter(
            nn.Parameter(torch.zeros(self.res, context_dim))
        )
        torch.nn.init.normal_(self.cross_values_y, std=std)

    def set_smpl_init(self, smplx_dir):
        """Fetch saved SMPL parameters and register buffers."""
        mean_params = np.load(os.path.join(smplx_dir, "smpl_mean_params.npz"))
        if self.nrot == 53:
            init_body_pose = (
                torch.eye(3)
                .reshape(1, 3, 3)
                .repeat(self.nrot, 1, 1)[:, :, :2]
                .flatten(1)
                .reshape(1, -1)
            )
            init_body_pose[:, : 24 * 6] = torch.from_numpy(
                mean_params["pose"][:]
            ).float()  # global_orient+body_pose from SMPL
        else:
            init_body_pose = torch.from_numpy(
                mean_params["pose"].astype(np.float32)
            ).unsqueeze(0)

        init_betas = torch.from_numpy(mean_params["shape"].astype("float32")).unsqueeze(
            0
        )
        init_cam = torch.from_numpy(mean_params["cam"].astype(np.float32)).unsqueeze(0)
        init_betas_kid = torch.cat(
            [init_betas, torch.zeros_like(init_betas[:, [0]])], 1
        )
        init_expression = 0.0 * torch.from_numpy(
            mean_params["shape"].astype("float32")
        ).unsqueeze(0)

        if self.num_betas == 11:
            init_betas = torch.cat([init_betas, torch.zeros_like(init_betas[:, :1])], 1)

        self.register_buffer("init_body_pose", init_body_pose)
        self.register_buffer("init_betas", init_betas)
        self.register_buffer("init_betas_kid", init_betas_kid)
        self.register_buffer("init_cam", init_cam)
        self.register_buffer("init_expression", init_expression)

    def cross_attn_inputs(self, x, x_central, idx_0, idx_det):
        """Reshape and pad x_central to have the right shape for Cross-attention processing.
        Inject learned embeddings to query and key inputs at the location of detected people.
        """

        h, w = x.shape[2], x.shape[3]
        x = einops.rearrange(x, "b c h w -> b (h w) c")

        assert idx_0 is not None, "Learned cross queries only work with multicross"

        if idx_0.shape[0] > 0:
            # reconstruct the batch/nb_people dimensions: pad for images with fewer people than max.
            counts, idx_det_0 = rebatch(idx_0, idx_det)
            old_shape = x_central.shape

            # Legacy check for old versions
            assert idx_det is not None, "idx_det needed for learned_attention"

            # xx is the tensor with all features
            xx = einops.rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
            # Get learned embeddings for queries, at positions with detected people.
            queries_xy = (
                self.cross_queries_x[idx_det[1]] + self.cross_queries_y[idx_det[2]]
            )
            # Add the embedding to the central features.
            x_central = x_central + queries_xy
            assert x_central.shape == old_shape, "Problem with shape"

            # Make it a tensor of dim. [batch, max_ppl_along_batch, ...]
            x_central, mask = pad_to_max(x_central, counts)

            # xx = einops.rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
            xx = xx[torch.cumsum(counts, dim=0) - 1]

            # Inject leared embeddings for key/values at detected locations.
            values_xy = (
                self.cross_values_x[idx_det[1]] + self.cross_values_y[idx_det[2]]
            )
            xx[idx_det_0, :, idx_det[1], idx_det[2]] += values_xy

            x = einops.rearrange(xx, "b c h w -> b (h w) c")
            num_ppl = x_central.shape[1]
        else:
            mask = None
            num_ppl = 1
            counts = None
        return x, x_central, mask, num_ppl, counts

    def forward(self, x_central, x, idx_0=None, idx_det=None, **kwargs):
        """ "
        Forward the HPH module.
        """
        batch_size = x.shape[0]

        # Reshape inputs for cross attention and inject learned embeddings for queries and values.
        x, x_central, mask, num_ppl, counts = self.cross_attn_inputs(
            x, x_central, idx_0, idx_det
        )

        # Add init (mean smpl params) to the query for each quantity being regressed.
        bs = x_central.shape[0] if idx_0.shape[0] else batch_size
        expand = lambda x: x.expand(bs, num_ppl, -1)
        pred_body_pose, pred_betas, pred_cam, pred_expression = [
            expand(x)
            for x in [
                self.init_body_pose,
                self.init_betas,
                self.init_cam,
                self.init_expression,
            ]
        ]
        token = torch.cat([x_central, pred_body_pose, pred_betas, pred_cam], dim=-1)
        if len(token.shape) == 2:
            token = token[:, None, :]

        # Process query and inputs with the cross-attention module.
        token_out = self.transformer(token, context=x, mask=mask)

        # Reshape outputs from [batch_size, nmax_ppl, ...] to [total_ppl, ...]
        if mask is not None:
            # Stack along batch axis.
            token_out_list = [token_out[i, :c, ...] for i, c in enumerate(counts)]
            token_out = torch.concat(token_out_list, dim=0)
        else:
            token_out = token_out.squeeze(1)  # (B, C)

        # Decoded output token and add to init for each quantity to regress.
        reshape = (
            (lambda x: x)
            if idx_0.shape[0] == 0
            else (lambda x: x[0, 0, ...][None, ...])
        )
        decoders = [self.decpose, self.decshape, self.deccam, self.decexpression]
        inits = [pred_body_pose, pred_betas, pred_cam, pred_expression]
        pred_body_pose, pred_betas, pred_cam, pred_expression = [
            d(token_out) + reshape(i) for d, i in zip(decoders, inits)
        ]

        # Convert self.joint_rep_type -> rotmat
        joint_conversion_fn = rot6d_to_rotmat

        # conversion
        pred_body_pose = joint_conversion_fn(pred_body_pose).view(
            batch_size, self.num_body_joints + 1, 3, 3
        )

        # Build the output dict
        pred_smpl_params = {
            "global_orient": pred_body_pose[:, [0]],
            "body_pose": pred_body_pose[:, 1:],
            "betas": pred_betas,
            #'betas_kid': pred_betas_kid,
            "expression": pred_expression,
        }
        return pred_smpl_params, pred_cam  # , pred_smpl_params_list


def regression_mlp(layers_sizes):
    """
    Return a fully connected network.
    """
    assert len(layers_sizes) >= 2
    in_features = layers_sizes[0]
    layers = []
    for i in range(1, len(layers_sizes) - 1):
        out_features = layers_sizes[i]
        layers.append(torch.nn.Linear(in_features, out_features))
        layers.append(torch.nn.ReLU())
        in_features = out_features
    layers.append(torch.nn.Linear(in_features, layers_sizes[-1]))
    return torch.nn.Sequential(*layers)


def apply_threshold(det_thresh, _scores):
    """Apply thresholding to detection scores; if stack_K is used and det_thresh is a list, apply to each channel separately"""
    if isinstance(det_thresh, list):
        det_thresh = det_thresh[0]
    idx = torch.where(_scores >= det_thresh)
    return idx


def _nms(heat, kernel=3):
    """easy non maximal supression (as in CenterNet)"""

    if kernel not in [2, 4]:
        pad = (kernel - 1) // 2
    else:
        if kernel == 2:
            pad = 1
        else:
            pad = 2

    hmax = nn.functional.max_pool2d(heat, (kernel, kernel), stride=1, padding=pad)

    if hmax.shape[2] > heat.shape[2]:
        hmax = hmax[:, :, : heat.shape[2], : heat.shape[3]]

    keep = (hmax == heat).float()

    return heat * keep


def _sigmoid(x):
    y = torch.clamp(x.sigmoid_(), min=1e-4, max=1 - 1e-4)
    return y


if __name__ == "__main__":
    Model()