Spaces:
Running
on
Zero
Running
on
Zero
File size: 28,497 Bytes
c614b0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 |
# Multi-HMR
# Copyright (c) 2024-present NAVER Corp.
# CC BY-NC-SA 4.0 license
import os
import sys
sys.path.append("./")
sys.path.append("./engine")
sys.path.append("./engine/pose_estimation")
import copy
import einops
import numpy as np
import roma
import torch
import torch.nn as nn
from blocks import (
Dinov2Backbone,
FourierPositionEncoding,
SMPL_Layer,
TransformerDecoder,
)
from pose_utils import (
inverse_perspective_projection,
pad_to_max,
rebatch,
rot6d_to_rotmat,
undo_focal_length_normalization,
undo_log_depth,
unpatch,
)
from torch import nn
def unravel_index(index, shape):
out = []
for dim in reversed(shape):
out.append(index % dim)
index = index // dim
return tuple(reversed(out))
class Model(nn.Module):
"""A ViT backbone followed by a "HPH" head (stack of cross attention layers with queries corresponding to detected humans.)"""
def __init__(
self,
backbone="dinov2_vitb14",
pretrained_backbone=False,
img_size=896,
camera_embedding="geometric", # geometric encodes viewing directions with fourrier encoding
camera_embedding_num_bands=16, # increase the size of the camera embedding
camera_embedding_max_resolution=64, # does not increase the size of the camera embedding
nearness=True, # regress log(1/z)
xat_depth=2, # number of cross attention block (SA, CA, MLP) in the HPH head.
xat_num_heads=8, # Number of attention heads
dict_smpl_layer=None,
person_center="head",
clip_dist=True,
num_betas=10,
smplx_dir=None,
*args,
**kwargs,
):
super().__init__()
# Save options
self.img_size = img_size
self.nearness = nearness
self.clip_dist = (clip_dist,)
self.xat_depth = xat_depth
self.xat_num_heads = xat_num_heads
self.num_betas = num_betas
self.output_mesh = True
# Setup backbone
self.backbone = Dinov2Backbone(backbone, pretrained=pretrained_backbone)
self.embed_dim = self.backbone.embed_dim
self.patch_size = self.backbone.patch_size
assert self.img_size % self.patch_size == 0, "Invalid img size"
# Camera instrinsics
self.fovn = 60
self.camera_embedding = camera_embedding
self.camera_embed_dim = 0
if self.camera_embedding is not None:
if not self.camera_embedding == "geometric":
raise NotImplementedError(
"Only geometric camera embedding is implemented"
)
self.camera = FourierPositionEncoding(
n=3,
num_bands=camera_embedding_num_bands,
max_resolution=camera_embedding_max_resolution,
)
# import pdb
# pdb.set_trace()
self.camera_embed_dim = self.camera.channels
# Heads - Detection
self.mlp_classif = regression_mlp(
[self.embed_dim, self.embed_dim, 1]
) # bg or human
# Heads - Human properties
self.mlp_offset = regression_mlp([self.embed_dim, self.embed_dim, 2]) # offset
# SMPL Layers
self.nrot = 53
dict_smpl_layer = {
"neutral": {
10: SMPL_Layer(
smplx_dir,
type="smplx",
gender="neutral",
num_betas=10,
kid=False,
person_center=person_center,
),
11: SMPL_Layer(
smplx_dir,
type="smplx",
gender="neutral",
num_betas=11,
kid=False,
person_center=person_center,
),
}
}
_moduleDict = []
for k, _smpl_layer in dict_smpl_layer.items():
for x, y in _smpl_layer.items():
_moduleDict.append([f"{k}_{x}", copy.deepcopy(y)])
self.smpl_layer = nn.ModuleDict(_moduleDict)
self.x_attention_head = HPH(
num_body_joints=self.nrot - 1, # 23,
context_dim=self.embed_dim + self.camera_embed_dim,
dim=1024,
depth=self.xat_depth,
heads=self.xat_num_heads,
mlp_dim=1024,
dim_head=32,
dropout=0.0,
emb_dropout=0.0,
at_token_res=self.img_size // self.patch_size,
num_betas=self.num_betas,
smplx_dir=smplx_dir,
)
print(f"person center is {person_center}")
# set whether do filter
def set_filter(self, apply_filter):
self.apply_filter = apply_filter
def detection(
self,
z,
nms_kernel_size,
det_thresh,
N,
idx=None,
max_dist=None,
is_training=False,
):
"""Detection score on the entire low res image"""
scores = _sigmoid(self.mlp_classif(z)) # per token detection score.
# Restore Height and Width dimensions.
scores = unpatch(
scores, patch_size=1, c=scores.shape[2], img_size=int(np.sqrt(N))
)
pseudo_idx = idx
if not is_training:
if (
nms_kernel_size > 1
): # Easy nms: supress adjacent high scores with max pooling.
scores = _nms(scores, kernel=nms_kernel_size)
_scores = torch.permute(scores, (0, 2, 3, 1))
# Binary decision (keep confident detections)
idx = apply_threshold(det_thresh, _scores)
if pseudo_idx is not None:
max_dist = 4 if max_dist is None else max_dist
mask = (torch.abs(idx[1] - pseudo_idx[1]) <= max_dist) & (
torch.abs(idx[2] - pseudo_idx[2]) <= max_dist
)
idx_num = torch.sum(mask)
if idx_num < 1:
top = torch.clamp(
pseudo_idx[1] - max_dist, min=0, max=_scores.shape[1] - 1
)
bottom = torch.clamp(
pseudo_idx[1] + max_dist, min=0, max=_scores.shape[1]
)
left = torch.clamp(
pseudo_idx[2] - max_dist, min=0, max=_scores.shape[2] - 1
)
right = torch.clamp(
pseudo_idx[2] + max_dist, min=0, max=_scores.shape[2]
)
neigborhoods = _scores[:, top:bottom, left:right, :]
idx = torch.argmax(neigborhoods)
try:
idx = unravel_index(idx, neigborhoods.shape)
except Exception as e:
print(pseudo_idx)
raise e
idx = (
pseudo_idx[0],
idx[1] + pseudo_idx[1] - max_dist,
idx[2] + pseudo_idx[2] - max_dist,
pseudo_idx[3],
)
elif idx_num > 1: # TODO
idx = (idx[0][mask], idx[1][mask], idx[2][mask], idx[3][mask])
else:
idx = (idx[0][mask], idx[1][mask], idx[2][mask], idx[3][mask])
# elif bbox is not None:
# mask = (idx[1] >= bbox[1]) & (idx[1] >= bbox[3]) & (idx[2] >= bbox[0]) & (idx[2] <= bbox[2])
# idx_num = torch.sum(mask)
# if idx_num < 1:
# top = torch.clamp(bbox[1], min=0, max=_scores.shape[1]-1)
# bottom = torch.clamp(bbox[3], min=0, max=_scores.shape[1]-1)
# left = torch.clamp(bbox[0], min=0, max=_scores.shape[2]-1)
# right = torch.clamp(bbox[2], min=0, max=_scores.shape[2]-1)
# neigborhoods = _scores[:, top:bottom, left:right, :]
# idx = torch.argmax(neigborhoods)
# try:
# idx = unravel_index(idx, neigborhoods.shape)
# except Exception as e:
# print(pseudo_idx)
# raise e
# idx = (idx[0], idx[1] + top, idx[2] + left, idx[3])
# else:
# idx = (idx[0][mask], idx[1][mask], idx[2][mask], idx[3][mask])
else:
assert idx is not None # training time
# Scores
scores_detected = scores[
idx[0], idx[3], idx[1], idx[2]
] # scores of the detected humans only
scores = torch.permute(scores, (0, 2, 3, 1))
return scores, scores_detected, idx
def embedd_camera(self, K, z):
"""Embed viewing directions using fourrier encoding."""
bs = z.shape[0]
_h, _w = list(z.shape[-2:])
points = (
torch.stack(
[
torch.arange(0, _h, 1).reshape(-1, 1).repeat(1, _w),
torch.arange(0, _w, 1).reshape(1, -1).repeat(_h, 1),
],
-1,
)
.to(z.device)
.float()
) # [h,w,2]
points = (
points * self.patch_size + self.patch_size // 2
) # move to pixel space - we give the pixel center of each token
points = points.reshape(1, -1, 2).repeat(bs, 1, 1) # (bs, N, 2): 2D points
distance = torch.ones(bs, points.shape[1], 1).to(
K.device
) # (bs, N, 1): distance in the 3D world
rays = inverse_perspective_projection(points, K, distance) # (bs, N, 3)
rays_embeddings = self.camera(pos=rays)
# Repeat for each element of the batch
z_K = rays_embeddings.reshape(bs, _h, _w, self.camera_embed_dim) # [bs,h,w,D]
return z_K
def to_euclidean_dist(self, x, dist, _K):
# Focal length normalization
focal = _K[:, [0], [0]]
dist = undo_focal_length_normalization(
dist, focal, fovn=self.fovn, img_size=x.shape[-1]
)
# log space
if self.nearness:
dist = undo_log_depth(dist)
# Clamping
if self.clip_dist:
dist = torch.clamp(dist, 0, 50)
return dist
def get_smpl(self):
return self.smpl_layer[f"neutral_{self.num_betas}"]
def generate_meshes(self, out):
"""
Generates meshes for each person detected in the image.
This function processes the output of the detection model, which includes rotation vectors,
shapes, locations, distances, expressions, and other information related to SMPL-X parameters.
Parameters:
out (dict): A dictionary containing detection results and SMPL-X related parameters.
Returns:
list: A list of dictionaries, each containing information about a detected person's mesh.
"""
# Neutral
persons = []
rotvec, shape, loc, dist, expression, K_det = (
out["rotvec"],
out["shape"],
out["loc"],
out["dist"],
out["expression"],
out["K_det"],
)
scores_det = out["scores_det"]
idx = out["idx"]
smpl_out = self.smpl_layer[f"neutral_{self.num_betas}"](
rotvec, shape, loc, dist, None, K=K_det, expression=expression
)
out.update(smpl_out)
for i in range(idx[0].shape[0]):
person = {
# Detection
"scores": scores_det[i], # detection scores
"loc": out["loc"][i], # 2d pixel location of the primary keypoints
# SMPL-X params
"transl": out["transl"][i], # from the primary keypoint i.e. the head
"transl_pelvis": out["transl_pelvis"][i], # of the pelvis joint
"rotvec": out["rotvec"][i],
"expression": out["expression"][i],
"shape": out["shape"][i],
# SMPL-X meshs
"v3d": out["v3d"][i],
"j3d": out["j3d"][i],
"j2d": out["j2d"][i],
}
persons.append(person)
return persons
def forward(
self,
x,
idx=None,
max_dist=None,
det_thresh=0.3,
nms_kernel_size=3,
K=None,
is_training=False,
*args,
**kwargs,
):
"""
Forward pass of the model and compute the loss according to the groundtruth
Args:
- x: RGB image - [bs,3,224,224]
- idx: GT location of persons - tuple of 3 tensor of shape [p]
- idx_j2d: GT location of 2d-kpts for each detected humans - tensor of shape [bs',14,2] - location in pixel space
Return:
- y: [bs,D,16,16]
"""
persons = []
out = {}
# Feature extraction
z = self.backbone(x)
B, N, C = z.size() # [bs,256,768]
# Detection
scores, scores_det, idx = self.detection(
z,
nms_kernel_size=nms_kernel_size,
det_thresh=det_thresh,
N=N,
idx=idx,
max_dist=max_dist,
is_training=is_training,
)
if torch.any(scores_det < 0.1):
return persons
if len(idx[1]) == 0 and not is_training:
# no humans detected in the frame
return persons
# Map of Dense Feature
z = unpatch(
z, patch_size=1, c=z.shape[2], img_size=int(np.sqrt(N))
) # [bs,D,16,16]
z_all = z
# Extract the 'central' features
z = torch.reshape(
z, (z.shape[0], 1, z.shape[1] // 1, z.shape[2], z.shape[3])
) # [bs,stack_K,D,16,16]
z_central = z[idx[0], idx[3], :, idx[1], idx[2]] # dense vectors
# 2D offset regression
offset = self.mlp_offset(z_central)
# Camera instrincs
K_det = K[idx[0]] # cameras for detected person
z_K = self.embedd_camera(K, z) # Embed viewing directions.
z_central = torch.cat(
[z_central, z_K[idx[0], idx[1], idx[2]]], 1
) # Add to query tokens.
z_all = torch.cat(
[z_all, z_K.permute(0, 3, 1, 2)], 1
) # for the cross-attention only
z = torch.cat([z, z_K.permute(0, 3, 1, 2).unsqueeze(1)], 2)
# Distance for estimating the 3D location in 3D space
loc = torch.stack([idx[2], idx[1]]).permute(
1, 0
) # Moving from higher resolution the location of the pelvis
loc = (loc + 0.5 + offset) * self.patch_size
# SMPL parameter regression
kv = z_all[
idx[0]
] # retrieving dense features associated to each central vector
pred_smpl_params, pred_cam = self.x_attention_head(
z_central, kv, idx_0=idx[0], idx_det=idx
)
# Get outputs from the SMPL layer.
shape = pred_smpl_params["betas"]
rotmat = torch.cat(
[pred_smpl_params["global_orient"], pred_smpl_params["body_pose"]], 1
)
expression = pred_smpl_params["expression"]
rotvec = roma.rotmat_to_rotvec(rotmat)
# Distance
dist = pred_cam[:, 0][:, None]
out["dist_postprocessed"] = (
dist # before applying any post-processing such as focal length normalization, inverse or log
)
dist = self.to_euclidean_dist(x, dist, K_det)
# Populate output dictionnary
out.update(
{
"scores": scores,
"offset": offset,
"dist": dist,
"expression": expression,
"rotmat": rotmat,
"shape": shape,
"rotvec": rotvec,
"loc": loc,
}
)
assert (
rotvec.shape[0] == shape.shape[0] == loc.shape[0] == dist.shape[0]
), "Incoherent shapes"
if not self.output_mesh:
out.update(
{
"K_det": K_det,
"scores_det": scores_det,
"idx": idx,
}
)
return out
# Neutral
smpl_out = self.smpl_layer[f"neutral_{self.num_betas}"](
rotvec, shape, loc, dist, None, K=K_det, expression=expression
)
out.update(smpl_out)
# Return
if is_training:
return out
else:
# Populate a dictionnary for each person
for i in range(idx[0].shape[0]):
person = {
# Detection
"scores": scores_det[i], # detection scores
"loc": out["loc"][i], # 2d pixel location of the primary keypoints
# SMPL-X params
"transl": out["transl"][
i
], # from the primary keypoint i.e. the head
"transl_pelvis": out["transl_pelvis"][i], # of the pelvis joint
"rotvec": out["rotvec"][i],
"expression": out["expression"][i],
"shape": out["shape"][i],
# SMPL-X meshs
"v3d": out["v3d"][i],
"j3d": out["j3d"][i],
"j2d": out["j2d"][i],
"dist": out["dist"][i],
"offset": out["offset"][i],
}
persons.append(person)
return persons
class HPH(nn.Module):
"""Cross-attention based SMPL Transformer decoder
Code modified from:
https://github.com/shubham-goel/4D-Humans/blob/a0def798c7eac811a63c8220fcc22d983b39785e/hmr2/models/heads/smpl_head.py#L17
https://github.com/shubham-goel/4D-Humans/blob/a0def798c7eac811a63c8220fcc22d983b39785e/hmr2/models/components/pose_transformer.py#L301
"""
def __init__(
self,
num_body_joints=52,
context_dim=1280,
dim=1024,
depth=2,
heads=8,
mlp_dim=1024,
dim_head=64,
dropout=0.0,
emb_dropout=0.0,
at_token_res=32,
num_betas=10,
smplx_dir=None,
):
super().__init__()
self.joint_rep_type, self.joint_rep_dim = "6d", 6
self.num_body_joints = num_body_joints
self.nrot = self.num_body_joints + 1
npose = self.joint_rep_dim * (self.num_body_joints + 1)
self.npose = npose
self.depth = (depth,)
self.heads = (heads,)
self.res = at_token_res
self.input_is_mean_shape = True
_context_dim = context_dim # for the central features
self.num_betas = num_betas
assert num_betas in [10, 11]
# Transformer Decoder setup.
# Based on https://github.com/shubham-goel/4D-Humans/blob/8830bb330558eea2395b7f57088ef0aae7f8fa22/hmr2/configs_hydra/experiment/hmr_vit_transformer.yaml#L35
transformer_args = dict(
num_tokens=1,
token_dim=(
(npose + self.num_betas + 3 + _context_dim)
if self.input_is_mean_shape
else 1
),
dim=dim,
depth=depth,
heads=heads,
mlp_dim=mlp_dim,
dim_head=dim_head,
dropout=dropout,
emb_dropout=emb_dropout,
context_dim=context_dim,
)
self.transformer = TransformerDecoder(**transformer_args)
dim = transformer_args["dim"]
# Final decoders to regress targets
self.decpose, self.decshape, self.deccam, self.decexpression = [
nn.Linear(dim, od) for od in [npose, num_betas, 3, 10]
]
# Register bufffers for the smpl layer.
self.set_smpl_init(smplx_dir)
# Init learned embeddings for the cross attention queries
self.init_learned_queries(context_dim)
def init_learned_queries(self, context_dim, std=0.2):
"""Init learned embeddings for queries"""
self.cross_queries_x = nn.Parameter(torch.zeros(self.res, context_dim))
torch.nn.init.normal_(self.cross_queries_x, std=std)
self.cross_queries_y = nn.Parameter(torch.zeros(self.res, context_dim))
torch.nn.init.normal_(self.cross_queries_y, std=std)
self.cross_values_x = nn.Parameter(torch.zeros(self.res, context_dim))
torch.nn.init.normal_(self.cross_values_x, std=std)
self.cross_values_y = nn.Parameter(
nn.Parameter(torch.zeros(self.res, context_dim))
)
torch.nn.init.normal_(self.cross_values_y, std=std)
def set_smpl_init(self, smplx_dir):
"""Fetch saved SMPL parameters and register buffers."""
mean_params = np.load(os.path.join(smplx_dir, "smpl_mean_params.npz"))
if self.nrot == 53:
init_body_pose = (
torch.eye(3)
.reshape(1, 3, 3)
.repeat(self.nrot, 1, 1)[:, :, :2]
.flatten(1)
.reshape(1, -1)
)
init_body_pose[:, : 24 * 6] = torch.from_numpy(
mean_params["pose"][:]
).float() # global_orient+body_pose from SMPL
else:
init_body_pose = torch.from_numpy(
mean_params["pose"].astype(np.float32)
).unsqueeze(0)
init_betas = torch.from_numpy(mean_params["shape"].astype("float32")).unsqueeze(
0
)
init_cam = torch.from_numpy(mean_params["cam"].astype(np.float32)).unsqueeze(0)
init_betas_kid = torch.cat(
[init_betas, torch.zeros_like(init_betas[:, [0]])], 1
)
init_expression = 0.0 * torch.from_numpy(
mean_params["shape"].astype("float32")
).unsqueeze(0)
if self.num_betas == 11:
init_betas = torch.cat([init_betas, torch.zeros_like(init_betas[:, :1])], 1)
self.register_buffer("init_body_pose", init_body_pose)
self.register_buffer("init_betas", init_betas)
self.register_buffer("init_betas_kid", init_betas_kid)
self.register_buffer("init_cam", init_cam)
self.register_buffer("init_expression", init_expression)
def cross_attn_inputs(self, x, x_central, idx_0, idx_det):
"""Reshape and pad x_central to have the right shape for Cross-attention processing.
Inject learned embeddings to query and key inputs at the location of detected people.
"""
h, w = x.shape[2], x.shape[3]
x = einops.rearrange(x, "b c h w -> b (h w) c")
assert idx_0 is not None, "Learned cross queries only work with multicross"
if idx_0.shape[0] > 0:
# reconstruct the batch/nb_people dimensions: pad for images with fewer people than max.
counts, idx_det_0 = rebatch(idx_0, idx_det)
old_shape = x_central.shape
# Legacy check for old versions
assert idx_det is not None, "idx_det needed for learned_attention"
# xx is the tensor with all features
xx = einops.rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
# Get learned embeddings for queries, at positions with detected people.
queries_xy = (
self.cross_queries_x[idx_det[1]] + self.cross_queries_y[idx_det[2]]
)
# Add the embedding to the central features.
x_central = x_central + queries_xy
assert x_central.shape == old_shape, "Problem with shape"
# Make it a tensor of dim. [batch, max_ppl_along_batch, ...]
x_central, mask = pad_to_max(x_central, counts)
# xx = einops.rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
xx = xx[torch.cumsum(counts, dim=0) - 1]
# Inject leared embeddings for key/values at detected locations.
values_xy = (
self.cross_values_x[idx_det[1]] + self.cross_values_y[idx_det[2]]
)
xx[idx_det_0, :, idx_det[1], idx_det[2]] += values_xy
x = einops.rearrange(xx, "b c h w -> b (h w) c")
num_ppl = x_central.shape[1]
else:
mask = None
num_ppl = 1
counts = None
return x, x_central, mask, num_ppl, counts
def forward(self, x_central, x, idx_0=None, idx_det=None, **kwargs):
""" "
Forward the HPH module.
"""
batch_size = x.shape[0]
# Reshape inputs for cross attention and inject learned embeddings for queries and values.
x, x_central, mask, num_ppl, counts = self.cross_attn_inputs(
x, x_central, idx_0, idx_det
)
# Add init (mean smpl params) to the query for each quantity being regressed.
bs = x_central.shape[0] if idx_0.shape[0] else batch_size
expand = lambda x: x.expand(bs, num_ppl, -1)
pred_body_pose, pred_betas, pred_cam, pred_expression = [
expand(x)
for x in [
self.init_body_pose,
self.init_betas,
self.init_cam,
self.init_expression,
]
]
token = torch.cat([x_central, pred_body_pose, pred_betas, pred_cam], dim=-1)
if len(token.shape) == 2:
token = token[:, None, :]
# Process query and inputs with the cross-attention module.
token_out = self.transformer(token, context=x, mask=mask)
# Reshape outputs from [batch_size, nmax_ppl, ...] to [total_ppl, ...]
if mask is not None:
# Stack along batch axis.
token_out_list = [token_out[i, :c, ...] for i, c in enumerate(counts)]
token_out = torch.concat(token_out_list, dim=0)
else:
token_out = token_out.squeeze(1) # (B, C)
# Decoded output token and add to init for each quantity to regress.
reshape = (
(lambda x: x)
if idx_0.shape[0] == 0
else (lambda x: x[0, 0, ...][None, ...])
)
decoders = [self.decpose, self.decshape, self.deccam, self.decexpression]
inits = [pred_body_pose, pred_betas, pred_cam, pred_expression]
pred_body_pose, pred_betas, pred_cam, pred_expression = [
d(token_out) + reshape(i) for d, i in zip(decoders, inits)
]
# Convert self.joint_rep_type -> rotmat
joint_conversion_fn = rot6d_to_rotmat
# conversion
pred_body_pose = joint_conversion_fn(pred_body_pose).view(
batch_size, self.num_body_joints + 1, 3, 3
)
# Build the output dict
pred_smpl_params = {
"global_orient": pred_body_pose[:, [0]],
"body_pose": pred_body_pose[:, 1:],
"betas": pred_betas,
#'betas_kid': pred_betas_kid,
"expression": pred_expression,
}
return pred_smpl_params, pred_cam # , pred_smpl_params_list
def regression_mlp(layers_sizes):
"""
Return a fully connected network.
"""
assert len(layers_sizes) >= 2
in_features = layers_sizes[0]
layers = []
for i in range(1, len(layers_sizes) - 1):
out_features = layers_sizes[i]
layers.append(torch.nn.Linear(in_features, out_features))
layers.append(torch.nn.ReLU())
in_features = out_features
layers.append(torch.nn.Linear(in_features, layers_sizes[-1]))
return torch.nn.Sequential(*layers)
def apply_threshold(det_thresh, _scores):
"""Apply thresholding to detection scores; if stack_K is used and det_thresh is a list, apply to each channel separately"""
if isinstance(det_thresh, list):
det_thresh = det_thresh[0]
idx = torch.where(_scores >= det_thresh)
return idx
def _nms(heat, kernel=3):
"""easy non maximal supression (as in CenterNet)"""
if kernel not in [2, 4]:
pad = (kernel - 1) // 2
else:
if kernel == 2:
pad = 1
else:
pad = 2
hmax = nn.functional.max_pool2d(heat, (kernel, kernel), stride=1, padding=pad)
if hmax.shape[2] > heat.shape[2]:
hmax = hmax[:, :, : heat.shape[2], : heat.shape[3]]
keep = (hmax == heat).float()
return heat * keep
def _sigmoid(x):
y = torch.clamp(x.sigmoid_(), min=1e-4, max=1 - 1e-4)
return y
if __name__ == "__main__":
Model()
|