File size: 9,495 Bytes
c614b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# Multi-HMR
# Copyright (c) 2024-present NAVER Corp.
# CC BY-NC-SA 4.0 license

import torch
import numpy as np
import trimesh
import math
from scipy.spatial.transform import Rotation
from PIL import ImageFont, ImageDraw, Image

OPENCV_TO_OPENGL_CAMERA_CONVENTION = np.array([[1, 0, 0, 0],
                                               [0, -1, 0, 0],
                                               [0, 0, -1, 0],
                                               [0, 0, 0, 1]])

def geotrf( Trf, pts, ncol=None, norm=False):
    """ Apply a geometric transformation to a list of 3-D points.
    H: 3x3 or 4x4 projection matrix (typically a Homography)
    p: numpy/torch/tuple of coordinates. Shape must be (...,2) or (...,3)
    
    ncol: int. number of columns of the result (2 or 3)
    norm: float. if != 0, the resut is projected on the z=norm plane.
    
    Returns an array of projected 2d points.
    """
    assert Trf.ndim in (2,3)
    if isinstance(Trf, np.ndarray):
        pts = np.asarray(pts)
    elif isinstance(Trf, torch.Tensor):
        pts = torch.as_tensor(pts, dtype=Trf.dtype)

    ncol = ncol or pts.shape[-1]

    # adapt shape if necessary
    output_reshape = pts.shape[:-1]
    if Trf.ndim == 3:
        assert len(Trf) == len(pts), 'batch size does not match'
    if Trf.ndim == 3 and pts.ndim > 3:
        # Trf == (B,d,d) & pts == (B,H,W,d) --> (B, H*W, d)
        pts = pts.reshape(pts.shape[0], -1, pts.shape[-1])
    elif Trf.ndim == 3 and pts.ndim == 2:
        # Trf == (B,d,d) & pts == (B,d) --> (B, 1, d)
        pts = pts[:, None, :]

    if pts.shape[-1]+1 == Trf.shape[-1]:
        Trf = Trf.swapaxes(-1,-2) # transpose Trf
        pts = pts @ Trf[...,:-1,:] + Trf[...,-1:,:]
    elif pts.shape[-1] == Trf.shape[-1]:
        Trf = Trf.swapaxes(-1,-2) # transpose Trf
        pts = pts @ Trf
    else:
        pts = Trf @ pts.T
        if pts.ndim >= 2: pts = pts.swapaxes(-1,-2)
    if norm: 
        pts = pts / pts[...,-1:] # DONT DO /= BECAUSE OF WEIRD PYTORCH BUG
        if norm != 1: pts *= norm

    return pts[...,:ncol].reshape(*output_reshape, ncol)

def create_scene(img_pil, l_mesh, l_face, color=None, metallicFactor=0., roughnessFactor=0.5, focal=600):
    
    scene = trimesh.Scene(
        lights=trimesh.scene.lighting.Light(intensity=3.0)
    )

    # Human meshes
    for i, mesh in enumerate(l_mesh):
        if color is None:
            _color = (np.random.choice(range(1,225))/255, np.random.choice(range(1,225))/255, np.random.choice(range(1,225))/255)
        else:
            if isinstance(color,list):
                _color = color[i]
            elif isinstance(color,tuple):
                _color = color
            else:
                raise NotImplementedError
        mesh = trimesh.Trimesh(mesh, l_face[i])
        mesh.visual = trimesh.visual.TextureVisuals(
            uv=None, 
            material=trimesh.visual.material.PBRMaterial(
              metallicFactor=metallicFactor,
              roughnessFactor=roughnessFactor,
              alphaMode='OPAQUE',
              baseColorFactor=(_color[0], _color[1], _color[2], 1.0)
            ),
            image=None, 
            face_materials=None
        )
        scene.add_geometry(mesh)

    # Image
    H, W = img_pil.size[0], img_pil.size[1]
    screen_width = 0.3
    height = focal * screen_width / H
    width = screen_width * 0.5**0.5
    rot45 = np.eye(4)
    rot45[:3,:3] = Rotation.from_euler('z',np.deg2rad(45)).as_matrix()
    rot45[2,3] = -height # set the tip of the cone = optical center
    aspect_ratio = np.eye(4)
    aspect_ratio[0,0] = W/H
    transform = OPENCV_TO_OPENGL_CAMERA_CONVENTION @ aspect_ratio @ rot45
    cam = trimesh.creation.cone(width, height, sections=4, transform=transform)
    # cam.apply_transform(transform)
    # import ipdb
    # ipdb.set_trace()

    # vertices = geotrf(transform, cam.vertices[[4,5,1,3]])
    vertices = cam.vertices[[4,5,1,3]]
    faces = np.array([[0, 1, 2], [0, 2, 3], [2, 1, 0], [3, 2, 0]])
    img = trimesh.Trimesh(vertices=vertices, faces=faces)
    uv_coords = np.float32([[0, 0], [1, 0], [1, 1], [0, 1]])
    # img_pil = Image.fromarray((255. * np.ones((20,20,3))).astype(np.uint8)) # white only!
    material = trimesh.visual.texture.SimpleMaterial(image=img_pil,
                                                     diffuse=[255,255,255,0], 
                                                     ambient=[255,255,255,0], 
                                                     specular=[255,255,255,0], 
                                                     glossiness=1.0)
    img.visual = trimesh.visual.TextureVisuals(uv=uv_coords, image=img_pil) #, material=material)
    # _main_color = [255,255,255,0]
    # print(img.visual.material.ambient)
    # print(img.visual.material.diffuse)
    # print(img.visual.material.specular)
    # print(img.visual.material.main_color)

    # img.visual.material.ambient = _main_color
    # img.visual.material.diffuse = _main_color
    # img.visual.material.specular = _main_color

    # img.visual.material.main_color = _main_color
    # img.visual.material.glossiness = _main_color
    scene.add_geometry(img)

    # this is the camera mesh
    rot2 = np.eye(4)
    rot2[:3,:3] = Rotation.from_euler('z',np.deg2rad(2)).as_matrix()
    # import ipdb
    # ipdb.set_trace()
    # vertices = cam.vertices
    # print(rot2)
    vertices = np.r_[cam.vertices, 0.95*cam.vertices, geotrf(rot2, cam.vertices)]
    # vertices = np.r_[cam.vertices, 0.95*cam.vertices, 1.05*cam.vertices]
    faces = []
    for face in cam.faces:
        if 0 in face: continue
        a,b,c = face
        a2,b2,c2 = face + len(cam.vertices)
        a3,b3,c3 = face + 2*len(cam.vertices)

        # add 3 pseudo-edges
        faces.append((a,b,b2))
        faces.append((a,a2,c))
        faces.append((c2,b,c))

        faces.append((a,b,b3))
        faces.append((a,a3,c))
        faces.append((c3,b,c))

    # no culling
    faces += [(c,b,a) for a,b,c in faces]

    cam = trimesh.Trimesh(vertices=vertices, faces=faces)
    cam.visual.face_colors[:,:3] = (255, 0, 0)
    scene.add_geometry(cam)
    
    # OpenCV to OpenGL
    rot = np.eye(4)
    cams2world = np.eye(4)
    rot[:3,:3] = Rotation.from_euler('y',np.deg2rad(180)).as_matrix()
    scene.apply_transform(np.linalg.inv(cams2world @ OPENCV_TO_OPENGL_CAMERA_CONVENTION @ rot))

    return scene


def length(v):
    return math.sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2])

def cross(v0, v1):
    return [
        v0[1]*v1[2]-v1[1]*v0[2],
        v0[2]*v1[0]-v1[2]*v0[0],
        v0[0]*v1[1]-v1[0]*v0[1]]

def dot(v0, v1):
    return v0[0]*v1[0]+v0[1]*v1[1]+v0[2]*v1[2]

def normalize(v, eps=1e-13):
    l = length(v)
    return [v[0]/(l+eps), v[1]/(l+eps), v[2]/(l+eps)]

def lookAt(eye, target, *args, **kwargs):
    """
    eye is the point of view, target is the point which is looked at and up is the upwards direction.

    Input should be in OpenCV format - we transform arguments to OpenGL
    Do compute in OpenGL and then transform back to OpenCV

    """
    # Transform from OpenCV to OpenGL format
    # eye = [eye[0], -eye[1], -eye[2]]
    # target = [target[0], -target[1], -target[2]]
    up = [0,-1,0]

    eye, at, up = eye, target, up
    zaxis = normalize((at[0]-eye[0], at[1]-eye[1], at[2]-eye[2]))
    xaxis = normalize(cross(zaxis, up))
    yaxis = cross(xaxis, zaxis)

    zaxis = [-zaxis[0],-zaxis[1],-zaxis[2]]

    viewMatrix = np.asarray([
        [xaxis[0], xaxis[1], xaxis[2], -dot(xaxis, eye)],
        [yaxis[0], yaxis[1], yaxis[2], -dot(yaxis, eye)],
        [zaxis[0], zaxis[1], zaxis[2], -dot(zaxis, eye)],
        [0, 0, 0, 1]]
    ).reshape(4,4)

    # OpenGL to OpenCV
    viewMatrix = OPENCV_TO_OPENGL_CAMERA_CONVENTION @ viewMatrix
    
    return viewMatrix

def print_distance_on_image(pred_rend_array, humans, _color):
    # Add distance to the image.
    font = ImageFont.load_default()
    rend_pil = Image.fromarray(pred_rend_array)
    draw = ImageDraw.Draw(rend_pil)
    for i_hum, hum in enumerate(humans):
            # distance
            transl = hum['transl_pelvis'].cpu().numpy().reshape(3)
            dist_cam = np.sqrt(((transl[[0,2]])**2).sum()) # discarding Y axis
            # 2d - bbox
            bbox = get_bbox(hum['j2d_smplx'].cpu().numpy(), factor=1.35, output_format='x1y1x2y2')
            loc = [(bbox[0] + bbox[2]) / 2., bbox[1]]
            txt = f"{dist_cam:.2f}m"
            length = font.getlength(txt)
            loc[0] = loc[0] - length // 2
            fill = tuple((np.asarray(_color[i_hum]) * 255).astype(np.int32).tolist())
            draw.text((loc[0], loc[1]), txt, fill=fill, font=font)
    return np.asarray(rend_pil)

def get_bbox(points, factor=1., output_format='xywh'):
    """
    Args:
        - y: [k,2]
    Return:
        - bbox: [4] in a specific format
    """
    assert len(points.shape) == 2, f"Wrong shape, expected two-dimensional array. Got shape {points.shape}"
    assert points.shape[1] == 2
    x1, x2 = points[:,0].min(), points[:,0].max()
    y1, y2 = points[:,1].min(), points[:,1].max()
    cx, cy = (x2 + x1) / 2., (y2 + y1) / 2.
    sx, sy = np.abs(x2 - x1), np.abs(y2 - y1)
    sx, sy = int(factor * sx), int(factor * sy)
    x1, y1 = int(cx - sx / 2.), int(cy - sy / 2.)
    x2, y2 = int(cx + sx / 2.), int(cy + sy / 2.)
    if output_format == 'xywh':
        return [x1,y1,sx,sy]
    elif output_format == 'x1y1x2y2':
        return [x1,y1,x2,y2]
    else:
        raise NotImplementedError