Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,495 Bytes
c614b0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
# Multi-HMR
# Copyright (c) 2024-present NAVER Corp.
# CC BY-NC-SA 4.0 license
import torch
import numpy as np
import trimesh
import math
from scipy.spatial.transform import Rotation
from PIL import ImageFont, ImageDraw, Image
OPENCV_TO_OPENGL_CAMERA_CONVENTION = np.array([[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, 1]])
def geotrf( Trf, pts, ncol=None, norm=False):
""" Apply a geometric transformation to a list of 3-D points.
H: 3x3 or 4x4 projection matrix (typically a Homography)
p: numpy/torch/tuple of coordinates. Shape must be (...,2) or (...,3)
ncol: int. number of columns of the result (2 or 3)
norm: float. if != 0, the resut is projected on the z=norm plane.
Returns an array of projected 2d points.
"""
assert Trf.ndim in (2,3)
if isinstance(Trf, np.ndarray):
pts = np.asarray(pts)
elif isinstance(Trf, torch.Tensor):
pts = torch.as_tensor(pts, dtype=Trf.dtype)
ncol = ncol or pts.shape[-1]
# adapt shape if necessary
output_reshape = pts.shape[:-1]
if Trf.ndim == 3:
assert len(Trf) == len(pts), 'batch size does not match'
if Trf.ndim == 3 and pts.ndim > 3:
# Trf == (B,d,d) & pts == (B,H,W,d) --> (B, H*W, d)
pts = pts.reshape(pts.shape[0], -1, pts.shape[-1])
elif Trf.ndim == 3 and pts.ndim == 2:
# Trf == (B,d,d) & pts == (B,d) --> (B, 1, d)
pts = pts[:, None, :]
if pts.shape[-1]+1 == Trf.shape[-1]:
Trf = Trf.swapaxes(-1,-2) # transpose Trf
pts = pts @ Trf[...,:-1,:] + Trf[...,-1:,:]
elif pts.shape[-1] == Trf.shape[-1]:
Trf = Trf.swapaxes(-1,-2) # transpose Trf
pts = pts @ Trf
else:
pts = Trf @ pts.T
if pts.ndim >= 2: pts = pts.swapaxes(-1,-2)
if norm:
pts = pts / pts[...,-1:] # DONT DO /= BECAUSE OF WEIRD PYTORCH BUG
if norm != 1: pts *= norm
return pts[...,:ncol].reshape(*output_reshape, ncol)
def create_scene(img_pil, l_mesh, l_face, color=None, metallicFactor=0., roughnessFactor=0.5, focal=600):
scene = trimesh.Scene(
lights=trimesh.scene.lighting.Light(intensity=3.0)
)
# Human meshes
for i, mesh in enumerate(l_mesh):
if color is None:
_color = (np.random.choice(range(1,225))/255, np.random.choice(range(1,225))/255, np.random.choice(range(1,225))/255)
else:
if isinstance(color,list):
_color = color[i]
elif isinstance(color,tuple):
_color = color
else:
raise NotImplementedError
mesh = trimesh.Trimesh(mesh, l_face[i])
mesh.visual = trimesh.visual.TextureVisuals(
uv=None,
material=trimesh.visual.material.PBRMaterial(
metallicFactor=metallicFactor,
roughnessFactor=roughnessFactor,
alphaMode='OPAQUE',
baseColorFactor=(_color[0], _color[1], _color[2], 1.0)
),
image=None,
face_materials=None
)
scene.add_geometry(mesh)
# Image
H, W = img_pil.size[0], img_pil.size[1]
screen_width = 0.3
height = focal * screen_width / H
width = screen_width * 0.5**0.5
rot45 = np.eye(4)
rot45[:3,:3] = Rotation.from_euler('z',np.deg2rad(45)).as_matrix()
rot45[2,3] = -height # set the tip of the cone = optical center
aspect_ratio = np.eye(4)
aspect_ratio[0,0] = W/H
transform = OPENCV_TO_OPENGL_CAMERA_CONVENTION @ aspect_ratio @ rot45
cam = trimesh.creation.cone(width, height, sections=4, transform=transform)
# cam.apply_transform(transform)
# import ipdb
# ipdb.set_trace()
# vertices = geotrf(transform, cam.vertices[[4,5,1,3]])
vertices = cam.vertices[[4,5,1,3]]
faces = np.array([[0, 1, 2], [0, 2, 3], [2, 1, 0], [3, 2, 0]])
img = trimesh.Trimesh(vertices=vertices, faces=faces)
uv_coords = np.float32([[0, 0], [1, 0], [1, 1], [0, 1]])
# img_pil = Image.fromarray((255. * np.ones((20,20,3))).astype(np.uint8)) # white only!
material = trimesh.visual.texture.SimpleMaterial(image=img_pil,
diffuse=[255,255,255,0],
ambient=[255,255,255,0],
specular=[255,255,255,0],
glossiness=1.0)
img.visual = trimesh.visual.TextureVisuals(uv=uv_coords, image=img_pil) #, material=material)
# _main_color = [255,255,255,0]
# print(img.visual.material.ambient)
# print(img.visual.material.diffuse)
# print(img.visual.material.specular)
# print(img.visual.material.main_color)
# img.visual.material.ambient = _main_color
# img.visual.material.diffuse = _main_color
# img.visual.material.specular = _main_color
# img.visual.material.main_color = _main_color
# img.visual.material.glossiness = _main_color
scene.add_geometry(img)
# this is the camera mesh
rot2 = np.eye(4)
rot2[:3,:3] = Rotation.from_euler('z',np.deg2rad(2)).as_matrix()
# import ipdb
# ipdb.set_trace()
# vertices = cam.vertices
# print(rot2)
vertices = np.r_[cam.vertices, 0.95*cam.vertices, geotrf(rot2, cam.vertices)]
# vertices = np.r_[cam.vertices, 0.95*cam.vertices, 1.05*cam.vertices]
faces = []
for face in cam.faces:
if 0 in face: continue
a,b,c = face
a2,b2,c2 = face + len(cam.vertices)
a3,b3,c3 = face + 2*len(cam.vertices)
# add 3 pseudo-edges
faces.append((a,b,b2))
faces.append((a,a2,c))
faces.append((c2,b,c))
faces.append((a,b,b3))
faces.append((a,a3,c))
faces.append((c3,b,c))
# no culling
faces += [(c,b,a) for a,b,c in faces]
cam = trimesh.Trimesh(vertices=vertices, faces=faces)
cam.visual.face_colors[:,:3] = (255, 0, 0)
scene.add_geometry(cam)
# OpenCV to OpenGL
rot = np.eye(4)
cams2world = np.eye(4)
rot[:3,:3] = Rotation.from_euler('y',np.deg2rad(180)).as_matrix()
scene.apply_transform(np.linalg.inv(cams2world @ OPENCV_TO_OPENGL_CAMERA_CONVENTION @ rot))
return scene
def length(v):
return math.sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2])
def cross(v0, v1):
return [
v0[1]*v1[2]-v1[1]*v0[2],
v0[2]*v1[0]-v1[2]*v0[0],
v0[0]*v1[1]-v1[0]*v0[1]]
def dot(v0, v1):
return v0[0]*v1[0]+v0[1]*v1[1]+v0[2]*v1[2]
def normalize(v, eps=1e-13):
l = length(v)
return [v[0]/(l+eps), v[1]/(l+eps), v[2]/(l+eps)]
def lookAt(eye, target, *args, **kwargs):
"""
eye is the point of view, target is the point which is looked at and up is the upwards direction.
Input should be in OpenCV format - we transform arguments to OpenGL
Do compute in OpenGL and then transform back to OpenCV
"""
# Transform from OpenCV to OpenGL format
# eye = [eye[0], -eye[1], -eye[2]]
# target = [target[0], -target[1], -target[2]]
up = [0,-1,0]
eye, at, up = eye, target, up
zaxis = normalize((at[0]-eye[0], at[1]-eye[1], at[2]-eye[2]))
xaxis = normalize(cross(zaxis, up))
yaxis = cross(xaxis, zaxis)
zaxis = [-zaxis[0],-zaxis[1],-zaxis[2]]
viewMatrix = np.asarray([
[xaxis[0], xaxis[1], xaxis[2], -dot(xaxis, eye)],
[yaxis[0], yaxis[1], yaxis[2], -dot(yaxis, eye)],
[zaxis[0], zaxis[1], zaxis[2], -dot(zaxis, eye)],
[0, 0, 0, 1]]
).reshape(4,4)
# OpenGL to OpenCV
viewMatrix = OPENCV_TO_OPENGL_CAMERA_CONVENTION @ viewMatrix
return viewMatrix
def print_distance_on_image(pred_rend_array, humans, _color):
# Add distance to the image.
font = ImageFont.load_default()
rend_pil = Image.fromarray(pred_rend_array)
draw = ImageDraw.Draw(rend_pil)
for i_hum, hum in enumerate(humans):
# distance
transl = hum['transl_pelvis'].cpu().numpy().reshape(3)
dist_cam = np.sqrt(((transl[[0,2]])**2).sum()) # discarding Y axis
# 2d - bbox
bbox = get_bbox(hum['j2d_smplx'].cpu().numpy(), factor=1.35, output_format='x1y1x2y2')
loc = [(bbox[0] + bbox[2]) / 2., bbox[1]]
txt = f"{dist_cam:.2f}m"
length = font.getlength(txt)
loc[0] = loc[0] - length // 2
fill = tuple((np.asarray(_color[i_hum]) * 255).astype(np.int32).tolist())
draw.text((loc[0], loc[1]), txt, fill=fill, font=font)
return np.asarray(rend_pil)
def get_bbox(points, factor=1., output_format='xywh'):
"""
Args:
- y: [k,2]
Return:
- bbox: [4] in a specific format
"""
assert len(points.shape) == 2, f"Wrong shape, expected two-dimensional array. Got shape {points.shape}"
assert points.shape[1] == 2
x1, x2 = points[:,0].min(), points[:,0].max()
y1, y2 = points[:,1].min(), points[:,1].max()
cx, cy = (x2 + x1) / 2., (y2 + y1) / 2.
sx, sy = np.abs(x2 - x1), np.abs(y2 - y1)
sx, sy = int(factor * sx), int(factor * sy)
x1, y1 = int(cx - sx / 2.), int(cy - sy / 2.)
x2, y2 = int(cx + sx / 2.), int(cy + sy / 2.)
if output_format == 'xywh':
return [x1,y1,sx,sy]
elif output_format == 'x1y1x2y2':
return [x1,y1,x2,y2]
else:
raise NotImplementedError
|