File size: 5,429 Bytes
c614b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# -*- coding: utf-8 -*-
# @Organization  : Alibaba XR-Lab
# @Author        : Lingteng Qiu
# @Email         : [email protected]
# @Time          : 2025-03-03 10:29:00
# @Function      : easy to use FaceSimilarity metric

import os
import pdb
import shutil
import sys

sys.path.append("./")
from collections import defaultdict

import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from prettytable import PrettyTable
from torch.utils.data import Dataset
from torchmetrics.image import StructuralSimilarityIndexMeasure
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
from torchvision import transforms
from tqdm import tqdm

from openlrm.models.arcface_utils import ResNetArcFace
from openlrm.utils.face_detector import FaceDetector

device = "cuda"
model_path = "./pretrained_models/gagatracker/vgghead/vgg_heads_l.trcd"
face_detector = FaceDetector(model_path=model_path, device=device)

id_face_net = ResNetArcFace()
id_face_net.cuda()
id_face_net.eval()


def get_image_paths_current_dir(folder_path):
    image_extensions = {
        ".jpg",
        ".jpeg",
        ".png",
        ".gif",
        ".bmp",
        ".tiff",
        ".webp",
        ".jfif",
    }

    return sorted(
        [
            os.path.join(folder_path, f)
            for f in os.listdir(folder_path)
            if os.path.splitext(f)[1].lower() in image_extensions
        ]
    )


def write_json(path, x):
    """write a json file.

    Args:
        path (str): path to write json file.
        x (dict): dict to write.
    """
    import json

    with open(path, "w") as f:
        json.dump(x, f, indent=2)


def crop_face_image(image_path):
    rgb = np.array(Image.open(image_path))
    rgb = torch.from_numpy(rgb).permute(2, 0, 1)
    bbox = face_detector(rgb)
    head_rgb = rgb[:, int(bbox[1]) : int(bbox[3]), int(bbox[0]) : int(bbox[2])]
    head_rgb = head_rgb.permute(1, 2, 0)
    head_rgb = head_rgb.cpu().numpy()
    return head_rgb


def gray_resize_for_identity(out, size=128):
    out_gray = (
        0.2989 * out[:, 0, :, :] + 0.5870 * out[:, 1, :, :] + 0.1140 * out[:, 2, :, :]
    )
    out_gray = out_gray.unsqueeze(1)
    out_gray = F.interpolate(
        out_gray, (size, size), mode="bilinear", align_corners=False
    )
    return out_gray


@torch.no_grad()
def eval(input_folder, target_folder, front_view_idx, device="cuda"):
    src_img = os.path.join(target_folder, f"{front_view_idx:05d}.png")
    if not os.path.exists(src_img):
        return -1

    head_img = crop_face_image(src_img)
    input_imgs = get_image_paths_current_dir(input_folder)
    if "visualization" in input_imgs[-1]:
        input_imgs = input_imgs[:-1]

    to_tensor = transforms.ToTensor()

    head_img = to_tensor(head_img).unsqueeze(0).to(device)
    src_head_tensor = gray_resize_for_identity(head_img)
    src_head_feature = id_face_net(src_head_tensor).detach()

    face_id_loss_list = []

    for input_img in input_imgs:
        try:
            input_img = crop_face_image(input_img)
            input_head_tensor = gray_resize_for_identity(
                to_tensor(input_img).unsqueeze(0).to(device)
            )
            input_head_feature = id_face_net(input_head_tensor).detach()
            face_id_loss = F.l1_loss(input_head_feature, src_head_feature)
            face_id_loss_list.append(face_id_loss.item())

        except:
            continue
    if len(face_id_loss_list) > 0:

        return min(face_id_loss_list)  # return max similarity view.
    else:
        return -1


def get_parse():
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument("-f1", "--folder1", type=str, required=True)
    parser.add_argument("-f2", "--folder2", type=str, required=True)
    parser.add_argument("--pad", action="store_true")
    parser.add_argument("--debug", action="store_true")
    args = parser.parse_args()
    return args


if __name__ == "__main__":

    opt = get_parse()

    input_folder = opt.folder1
    target_folder = opt.folder2

    valid_txt = os.path.join(input_folder, "front_view.txt")

    target_folder = target_folder[:-1] if target_folder[-1] == "/" else target_folder

    target_key = target_folder.split("/")[-2:]

    save_folder = os.path.join("./exps/metrics", "psnr_results", *target_key)
    os.makedirs(save_folder, exist_ok=True)

    with open(valid_txt) as f:
        items = f.read().splitlines()
        items = [x.split(" ") for x in items]

    results_dict = defaultdict(dict)
    face_similarity_list = []

    for item_ in tqdm(items):

        try:
            item, front_view_idx = item_
            front_view_idx = int(front_view_idx)
        except:
            print(item_)

        target_item_folder = os.path.join(input_folder, item)
        input_item_folder = os.path.join(target_folder, item, "rgb")

        if os.path.exists(input_item_folder) and os.path.exists(target_item_folder):

            fs_ = eval(input_item_folder, target_item_folder, front_view_idx)

            if fs_ == -1:
                continue

            face_similarity_list.append(fs_)

            results_dict[item]["face_similarity"] = fs_
            if opt.debug:
                break
            print(results_dict)

    results_dict["all_mean"]["face_similarity"] = np.mean(face_similarity_list)

    write_json(os.path.join(save_folder, "face_similarity.json"), results_dict)