Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023-2024, Qi Zuo | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# https://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
os.system("rm -rf /data-nvme/zerogpu-offload/") | |
os.system("pip install chumpy") | |
os.system("pip uninstall -y basicsr") | |
os.system("pip install git+https://github.com/hitsz-zuoqi/BasicSR/") | |
os.system("pip install numpy==1.23.0") | |
os.system("pip install ./wheels/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl") | |
os.system("pip install ./wheels/simple_knn-0.0.0-cp310-cp310-linux_x86_64.whl") | |
os.system("pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt240/download.html") | |
import cv2 | |
import time | |
from PIL import Image | |
import numpy as np | |
import gradio as gr | |
import base64 | |
import spaces | |
import torch | |
torch._dynamo.config.disable = True | |
import subprocess | |
import os | |
import argparse | |
from omegaconf import OmegaConf | |
from rembg import remove | |
from engine.pose_estimation.pose_estimator import PoseEstimator | |
from LHM.utils.face_detector import VGGHeadDetector | |
from LHM.utils.hf_hub import wrap_model_hub | |
from LHM.runners.infer.utils import ( | |
calc_new_tgt_size_by_aspect, | |
center_crop_according_to_mask, | |
prepare_motion_seqs, | |
resize_image_keepaspect_np, | |
) | |
from LHM.utils.ffmpeg_utils import images_to_video | |
from engine.SegmentAPI.base import Bbox | |
def get_bbox(mask): | |
height, width = mask.shape | |
pha = mask / 255.0 | |
pha[pha < 0.5] = 0.0 | |
pha[pha >= 0.5] = 1.0 | |
# obtain bbox | |
_h, _w = np.where(pha == 1) | |
whwh = [ | |
_w.min().item(), | |
_h.min().item(), | |
_w.max().item(), | |
_h.max().item(), | |
] | |
box = Bbox(whwh) | |
# scale box to 1.05 | |
scale_box = box.scale(1.1, width=width, height=height) | |
return scale_box | |
# def infer_preprocess_image( | |
# rgb_path, | |
# mask, | |
# intr, | |
# pad_ratio, | |
# bg_color, | |
# max_tgt_size, | |
# aspect_standard, | |
# enlarge_ratio, | |
# render_tgt_size, | |
# multiply, | |
# need_mask=True, | |
# ): | |
# """inferece | |
# image, _, _ = preprocess_image(image_path, mask_path=None, intr=None, pad_ratio=0, bg_color=1.0, | |
# max_tgt_size=896, aspect_standard=aspect_standard, enlarge_ratio=[1.0, 1.0], | |
# render_tgt_size=source_size, multiply=14, need_mask=True) | |
# """ | |
# rgb = np.array(Image.open(rgb_path)) | |
# rgb_raw = rgb.copy() | |
# bbox = get_bbox(mask) | |
# bbox_list = bbox.get_box() | |
# rgb = rgb[bbox_list[1] : bbox_list[3], bbox_list[0] : bbox_list[2]] | |
# mask = mask[bbox_list[1] : bbox_list[3], bbox_list[0] : bbox_list[2]] | |
# h, w, _ = rgb.shape | |
# assert w < h | |
# cur_ratio = h / w | |
# scale_ratio = cur_ratio / aspect_standard | |
# target_w = int(min(w * scale_ratio, h)) | |
# offset_w = (target_w - w) // 2 | |
# # resize to target ratio. | |
# if offset_w > 0: | |
# rgb = np.pad( | |
# rgb, | |
# ((0, 0), (offset_w, offset_w), (0, 0)), | |
# mode="constant", | |
# constant_values=255, | |
# ) | |
# mask = np.pad( | |
# mask, | |
# ((0, 0), (offset_w, offset_w)), | |
# mode="constant", | |
# constant_values=0, | |
# ) | |
# else: | |
# offset_w = -offset_w | |
# rgb = rgb[:,offset_w:-offset_w,:] | |
# mask = mask[:,offset_w:-offset_w] | |
# # resize to target ratio. | |
# rgb = np.pad( | |
# rgb, | |
# ((0, 0), (offset_w, offset_w), (0, 0)), | |
# mode="constant", | |
# constant_values=255, | |
# ) | |
# mask = np.pad( | |
# mask, | |
# ((0, 0), (offset_w, offset_w)), | |
# mode="constant", | |
# constant_values=0, | |
# ) | |
# rgb = rgb / 255.0 # normalize to [0, 1] | |
# mask = mask / 255.0 | |
# mask = (mask > 0.5).astype(np.float32) | |
# rgb = rgb[:, :, :3] * mask[:, :, None] + bg_color * (1 - mask[:, :, None]) | |
# # resize to specific size require by preprocessor of smplx-estimator. | |
# rgb = resize_image_keepaspect_np(rgb, max_tgt_size) | |
# mask = resize_image_keepaspect_np(mask, max_tgt_size) | |
# # crop image to enlarge human area. | |
# rgb, mask, offset_x, offset_y = center_crop_according_to_mask( | |
# rgb, mask, aspect_standard, enlarge_ratio | |
# ) | |
# if intr is not None: | |
# intr[0, 2] -= offset_x | |
# intr[1, 2] -= offset_y | |
# # resize to render_tgt_size for training | |
# tgt_hw_size, ratio_y, ratio_x = calc_new_tgt_size_by_aspect( | |
# cur_hw=rgb.shape[:2], | |
# aspect_standard=aspect_standard, | |
# tgt_size=render_tgt_size, | |
# multiply=multiply, | |
# ) | |
# rgb = cv2.resize( | |
# rgb, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=cv2.INTER_AREA | |
# ) | |
# mask = cv2.resize( | |
# mask, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=cv2.INTER_AREA | |
# ) | |
# if intr is not None: | |
# # ******************** Merge *********************** # | |
# intr = scale_intrs(intr, ratio_x=ratio_x, ratio_y=ratio_y) | |
# assert ( | |
# abs(intr[0, 2] * 2 - rgb.shape[1]) < 2.5 | |
# ), f"{intr[0, 2] * 2}, {rgb.shape[1]}" | |
# assert ( | |
# abs(intr[1, 2] * 2 - rgb.shape[0]) < 2.5 | |
# ), f"{intr[1, 2] * 2}, {rgb.shape[0]}" | |
# # ******************** Merge *********************** # | |
# intr[0, 2] = rgb.shape[1] // 2 | |
# intr[1, 2] = rgb.shape[0] // 2 | |
# rgb = torch.from_numpy(rgb).float().permute(2, 0, 1).unsqueeze(0) # [1, 3, H, W] | |
# mask = ( | |
# torch.from_numpy(mask[:, :, None]).float().permute(2, 0, 1).unsqueeze(0) | |
# ) # [1, 1, H, W] | |
# return rgb, mask, intr | |
def infer_preprocess_image( | |
rgb_path, | |
mask, | |
intr, | |
pad_ratio, | |
bg_color, | |
max_tgt_size, | |
aspect_standard, | |
enlarge_ratio, | |
render_tgt_size, | |
multiply, | |
need_mask=True, | |
): | |
"""inferece | |
image, _, _ = preprocess_image(image_path, mask_path=None, intr=None, pad_ratio=0, bg_color=1.0, | |
max_tgt_size=896, aspect_standard=aspect_standard, enlarge_ratio=[1.0, 1.0], | |
render_tgt_size=source_size, multiply=14, need_mask=True) | |
""" | |
rgb = np.array(Image.open(rgb_path)) | |
rgb_raw = rgb.copy() | |
bbox = get_bbox(mask) | |
bbox_list = bbox.get_box() | |
rgb = rgb[bbox_list[1] : bbox_list[3], bbox_list[0] : bbox_list[2]] | |
mask = mask[bbox_list[1] : bbox_list[3], bbox_list[0] : bbox_list[2]] | |
h, w, _ = rgb.shape | |
assert w < h | |
cur_ratio = h / w | |
scale_ratio = cur_ratio / aspect_standard | |
target_w = int(min(w * scale_ratio, h)) | |
if target_w - w >0: | |
offset_w = (target_w - w) // 2 | |
rgb = np.pad( | |
rgb, | |
((0, 0), (offset_w, offset_w), (0, 0)), | |
mode="constant", | |
constant_values=255, | |
) | |
mask = np.pad( | |
mask, | |
((0, 0), (offset_w, offset_w)), | |
mode="constant", | |
constant_values=0, | |
) | |
else: | |
target_h = w * aspect_standard | |
offset_h = int(target_h - h) | |
rgb = np.pad( | |
rgb, | |
((offset_h, 0), (0, 0), (0, 0)), | |
mode="constant", | |
constant_values=255, | |
) | |
mask = np.pad( | |
mask, | |
((offset_h, 0), (0, 0)), | |
mode="constant", | |
constant_values=0, | |
) | |
rgb = rgb / 255.0 # normalize to [0, 1] | |
mask = mask / 255.0 | |
mask = (mask > 0.5).astype(np.float32) | |
rgb = rgb[:, :, :3] * mask[:, :, None] + bg_color * (1 - mask[:, :, None]) | |
# resize to specific size require by preprocessor of smplx-estimator. | |
rgb = resize_image_keepaspect_np(rgb, max_tgt_size) | |
mask = resize_image_keepaspect_np(mask, max_tgt_size) | |
# crop image to enlarge human area. | |
rgb, mask, offset_x, offset_y = center_crop_according_to_mask( | |
rgb, mask, aspect_standard, enlarge_ratio | |
) | |
if intr is not None: | |
intr[0, 2] -= offset_x | |
intr[1, 2] -= offset_y | |
# resize to render_tgt_size for training | |
tgt_hw_size, ratio_y, ratio_x = calc_new_tgt_size_by_aspect( | |
cur_hw=rgb.shape[:2], | |
aspect_standard=aspect_standard, | |
tgt_size=render_tgt_size, | |
multiply=multiply, | |
) | |
rgb = cv2.resize( | |
rgb, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=cv2.INTER_AREA | |
) | |
mask = cv2.resize( | |
mask, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=cv2.INTER_AREA | |
) | |
if intr is not None: | |
# ******************** Merge *********************** # | |
intr = scale_intrs(intr, ratio_x=ratio_x, ratio_y=ratio_y) | |
assert ( | |
abs(intr[0, 2] * 2 - rgb.shape[1]) < 2.5 | |
), f"{intr[0, 2] * 2}, {rgb.shape[1]}" | |
assert ( | |
abs(intr[1, 2] * 2 - rgb.shape[0]) < 2.5 | |
), f"{intr[1, 2] * 2}, {rgb.shape[0]}" | |
# ******************** Merge *********************** # | |
intr[0, 2] = rgb.shape[1] // 2 | |
intr[1, 2] = rgb.shape[0] // 2 | |
rgb = torch.from_numpy(rgb).float().permute(2, 0, 1).unsqueeze(0) # [1, 3, H, W] | |
mask = ( | |
torch.from_numpy(mask[:, :, None]).float().permute(2, 0, 1).unsqueeze(0) | |
) # [1, 1, H, W] | |
return rgb, mask, intr | |
def parse_configs(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--config", type=str) | |
parser.add_argument("--infer", type=str) | |
args, unknown = parser.parse_known_args() | |
cfg = OmegaConf.create() | |
cli_cfg = OmegaConf.from_cli(unknown) | |
# parse from ENV | |
if os.environ.get("APP_INFER") is not None: | |
args.infer = os.environ.get("APP_INFER") | |
if os.environ.get("APP_MODEL_NAME") is not None: | |
cli_cfg.model_name = os.environ.get("APP_MODEL_NAME") | |
args.config = args.infer if args.config is None else args.config | |
if args.config is not None: | |
cfg_train = OmegaConf.load(args.config) | |
cfg.source_size = cfg_train.dataset.source_image_res | |
try: | |
cfg.src_head_size = cfg_train.dataset.src_head_size | |
except: | |
cfg.src_head_size = 112 | |
cfg.render_size = cfg_train.dataset.render_image.high | |
_relative_path = os.path.join( | |
cfg_train.experiment.parent, | |
cfg_train.experiment.child, | |
os.path.basename(cli_cfg.model_name).split("_")[-1], | |
) | |
cfg.save_tmp_dump = os.path.join("exps", "save_tmp", _relative_path) | |
cfg.image_dump = os.path.join("exps", "images", _relative_path) | |
cfg.video_dump = os.path.join("exps", "videos", _relative_path) # output path | |
if args.infer is not None: | |
cfg_infer = OmegaConf.load(args.infer) | |
cfg.merge_with(cfg_infer) | |
cfg.setdefault( | |
"save_tmp_dump", os.path.join("exps", cli_cfg.model_name, "save_tmp") | |
) | |
cfg.setdefault("image_dump", os.path.join("exps", cli_cfg.model_name, "images")) | |
cfg.setdefault( | |
"video_dump", os.path.join("dumps", cli_cfg.model_name, "videos") | |
) | |
cfg.setdefault("mesh_dump", os.path.join("dumps", cli_cfg.model_name, "meshes")) | |
cfg.motion_video_read_fps = 6 | |
cfg.merge_with(cli_cfg) | |
cfg.setdefault("logger", "INFO") | |
assert cfg.model_name is not None, "model_name is required" | |
return cfg, cfg_train | |
def _build_model(cfg): | |
from LHM.models import model_dict | |
hf_model_cls = wrap_model_hub(model_dict["human_lrm_sapdino_bh_sd3_5"]) | |
model = hf_model_cls.from_pretrained(cfg.model_name) | |
return model | |
def launch_pretrained(): | |
from huggingface_hub import snapshot_download, hf_hub_download | |
hf_hub_download(repo_id="3DAIGC/LHM", repo_type='model', filename='assets.tar', local_dir="./") | |
os.system("tar -xf assets.tar && rm assets.tar") | |
# hf_hub_download(repo_id="3DAIGC/LHM", repo_type='model', filename='LHM-0.5B.tar', local_dir="./") | |
# os.system("tar -xf LHM-0.5B.tar && rm LHM-0.5B.tar") | |
hf_hub_download(repo_id="3DAIGC/LHM", repo_type='model', filename='LHM_prior_model.tar', local_dir="./") | |
os.system("tar -xf LHM_prior_model.tar && rm LHM_prior_model.tar") | |
# replace the weight of full body | |
hf_hub_download(repo_id="3DAIGC/LHM-500M-HF", repo_type='model', filename='config.json', local_dir="./exps/releases/video_human_benchmark/human-lrm-500M/step_060000/") | |
hf_hub_download(repo_id="3DAIGC/LHM-500M-HF", repo_type='model', filename='model.safetensors', local_dir="./exps/releases/video_human_benchmark/human-lrm-500M/step_060000/") | |
def launch_env_not_compile_with_cuda(): | |
os.system("pip install chumpy") | |
os.system("pip uninstall -y basicsr") | |
os.system("pip install git+https://github.com/hitsz-zuoqi/BasicSR/") | |
os.system("pip install numpy==1.23.0") | |
def animation_infer(renderer, gs_model_list, query_points, smplx_params, render_c2ws, render_intrs, render_bg_colors): | |
'''Inference code avoid repeat forward. | |
''' | |
render_h, render_w = int(render_intrs[0, 0, 1, 2] * 2), int( | |
render_intrs[0, 0, 0, 2] * 2 | |
) | |
# render target views | |
render_res_list = [] | |
num_views = render_c2ws.shape[1] | |
start_time = time.time() | |
# render target views | |
render_res_list = [] | |
for view_idx in range(num_views): | |
render_res = renderer.forward_animate_gs( | |
gs_model_list, | |
query_points, | |
renderer.get_single_view_smpl_data(smplx_params, view_idx), | |
render_c2ws[:, view_idx : view_idx + 1], | |
render_intrs[:, view_idx : view_idx + 1], | |
render_h, | |
render_w, | |
render_bg_colors[:, view_idx : view_idx + 1], | |
) | |
render_res_list.append(render_res) | |
print( | |
f"time elpased(animate gs model per frame):{(time.time() - start_time)/num_views}" | |
) | |
out = defaultdict(list) | |
for res in render_res_list: | |
for k, v in res.items(): | |
if isinstance(v[0], torch.Tensor): | |
out[k].append(v.detach().cpu()) | |
else: | |
out[k].append(v) | |
for k, v in out.items(): | |
# print(f"out key:{k}") | |
if isinstance(v[0], torch.Tensor): | |
out[k] = torch.concat(v, dim=1) | |
if k in ["comp_rgb", "comp_mask", "comp_depth"]: | |
out[k] = out[k][0].permute( | |
0, 2, 3, 1 | |
) # [1, Nv, 3, H, W] -> [Nv, 3, H, W] - > [Nv, H, W, 3] | |
else: | |
out[k] = v | |
return out | |
def assert_input_image(input_image): | |
if input_image is None: | |
raise gr.Error("No image selected or uploaded!") | |
def prepare_working_dir(): | |
import tempfile | |
working_dir = tempfile.TemporaryDirectory() | |
return working_dir | |
def init_preprocessor(): | |
from LHM.utils.preprocess import Preprocessor | |
global preprocessor | |
preprocessor = Preprocessor() | |
def preprocess_fn(image_in: np.ndarray, remove_bg: bool, recenter: bool, working_dir): | |
image_raw = os.path.join(working_dir.name, "raw.png") | |
with Image.fromarray(image_in) as img: | |
img.save(image_raw) | |
image_out = os.path.join(working_dir.name, "rembg.png") | |
success = preprocessor.preprocess(image_path=image_raw, save_path=image_out, rmbg=remove_bg, recenter=recenter) | |
assert success, f"Failed under preprocess_fn!" | |
return image_out | |
def get_image_base64(path): | |
with open(path, "rb") as image_file: | |
encoded_string = base64.b64encode(image_file.read()).decode() | |
return f"data:image/png;base64,{encoded_string}" | |
def demo_lhm(pose_estimator, face_detector, lhm, cfg): | |
def core_fn(image: str, video_params, working_dir): | |
image_raw = os.path.join(working_dir.name, "raw.png") | |
with Image.fromarray(image) as img: | |
img.save(image_raw) | |
base_vid = os.path.basename(video_params).split("_")[0] | |
smplx_params_dir = os.path.join("./assets/sample_motion", base_vid, "smplx_params") | |
dump_video_path = os.path.join(working_dir.name, "output.mp4") | |
dump_image_path = os.path.join(working_dir.name, "output.png") | |
dump_model_path = os.path.join(working_dir.name, "output.ply") | |
# prepare dump paths | |
omit_prefix = os.path.dirname(image_raw) | |
image_name = os.path.basename(image_raw) | |
uid = image_name.split(".")[0] | |
subdir_path = os.path.dirname(image_raw).replace(omit_prefix, "") | |
subdir_path = ( | |
subdir_path[1:] if subdir_path.startswith("/") else subdir_path | |
) | |
print("subdir_path and uid:", subdir_path, uid) | |
motion_seqs_dir = smplx_params_dir | |
motion_name = os.path.dirname( | |
motion_seqs_dir[:-1] if motion_seqs_dir[-1] == "/" else motion_seqs_dir | |
) | |
motion_name = os.path.basename(motion_name) | |
dump_image_dir = os.path.dirname(dump_image_path) | |
os.makedirs(dump_image_dir, exist_ok=True) | |
print(image_raw, motion_seqs_dir, dump_image_dir, dump_video_path) | |
dump_tmp_dir = dump_image_dir | |
shape_pose = pose_estimator(image_raw) | |
assert shape_pose.is_full_body, f"The input image is illegal, {shape_pose.msg}" | |
if os.path.exists(dump_video_path): | |
return dump_image_path, dump_video_path | |
source_size = cfg.source_size | |
render_size = cfg.render_size | |
render_fps = 30 | |
aspect_standard = 5.0 / 3 | |
motion_img_need_mask = cfg.get("motion_img_need_mask", False) # False | |
vis_motion = cfg.get("vis_motion", False) # False | |
input_np = cv2.imread(image_raw) | |
output_np = remove(input_np) | |
# cv2.imwrite("./vis.png", output_np) | |
parsing_mask = output_np[:,:,3] | |
# prepare reference image | |
image, _, _ = infer_preprocess_image( | |
image_raw, | |
mask=parsing_mask, | |
intr=None, | |
pad_ratio=0, | |
bg_color=1.0, | |
max_tgt_size=896, | |
aspect_standard=aspect_standard, | |
enlarge_ratio=[1.0, 1.0], | |
render_tgt_size=source_size, | |
multiply=14, | |
need_mask=True, | |
) | |
try: | |
rgb = np.array(Image.open(image_path)) | |
rgb = torch.from_numpy(rgb).permute(2, 0, 1) | |
bbox = face_detector.detect_face(rgb) | |
head_rgb = rgb[:, int(bbox[1]) : int(bbox[3]), int(bbox[0]) : int(bbox[2])] | |
head_rgb = head_rgb.permute(1, 2, 0) | |
src_head_rgb = head_rgb.cpu().numpy() | |
except: | |
print("w/o head input!") | |
src_head_rgb = np.zeros((112, 112, 3), dtype=np.uint8) | |
# resize to dino size | |
try: | |
src_head_rgb = cv2.resize( | |
src_head_rgb, | |
dsize=(cfg.src_head_size, cfg.src_head_size), | |
interpolation=cv2.INTER_AREA, | |
) # resize to dino size | |
except: | |
src_head_rgb = np.zeros( | |
(cfg.src_head_size, cfg.src_head_size, 3), dtype=np.uint8 | |
) | |
src_head_rgb = ( | |
torch.from_numpy(src_head_rgb / 255.0).float().permute(2, 0, 1).unsqueeze(0) | |
) # [1, 3, H, W] | |
save_ref_img_path = os.path.join( | |
dump_tmp_dir, "output.png" | |
) | |
vis_ref_img = (image[0].permute(1, 2, 0).cpu().detach().numpy() * 255).astype( | |
np.uint8 | |
) | |
Image.fromarray(vis_ref_img).save(save_ref_img_path) | |
# read motion seq | |
motion_name = os.path.dirname( | |
motion_seqs_dir[:-1] if motion_seqs_dir[-1] == "/" else motion_seqs_dir | |
) | |
motion_name = os.path.basename(motion_name) | |
motion_seq = prepare_motion_seqs( | |
motion_seqs_dir, | |
None, | |
save_root=dump_tmp_dir, | |
fps=30, | |
bg_color=1.0, | |
aspect_standard=aspect_standard, | |
enlarge_ratio=[1.0, 1, 0], | |
render_image_res=render_size, | |
multiply=16, | |
need_mask=motion_img_need_mask, | |
vis_motion=vis_motion, | |
) | |
camera_size = len(motion_seq["motion_seqs"]) | |
shape_param = shape_pose.beta | |
device = "cuda" | |
dtype = torch.float32 | |
shape_param = torch.tensor(shape_param, dtype=dtype).unsqueeze(0) | |
lhm.to(dtype) | |
smplx_params = motion_seq['smplx_params'] | |
smplx_params['betas'] = shape_param.to(device) | |
gs_model_list, query_points, transform_mat_neutral_pose = lhm.infer_single_view( | |
image.unsqueeze(0).to(device, dtype), | |
src_head_rgb.unsqueeze(0).to(device, dtype), | |
None, | |
None, | |
render_c2ws=motion_seq["render_c2ws"].to(device), | |
render_intrs=motion_seq["render_intrs"].to(device), | |
render_bg_colors=motion_seq["render_bg_colors"].to(device), | |
smplx_params={ | |
k: v.to(device) for k, v in smplx_params.items() | |
}, | |
) | |
# # export ply model | |
# print(dump_model_path) | |
# gs_model_list[0].save_ply(dump_model_path) | |
# rendering !!!! | |
start_time = time.time() | |
batch_dict = dict() | |
batch_size = 80 # avoid memeory out! | |
for batch_i in range(0, camera_size, batch_size): | |
with torch.no_grad(): | |
# TODO check device and dtype | |
# dict_keys(['comp_rgb', 'comp_rgb_bg', 'comp_mask', 'comp_depth', '3dgs']) | |
keys = [ | |
"root_pose", | |
"body_pose", | |
"jaw_pose", | |
"leye_pose", | |
"reye_pose", | |
"lhand_pose", | |
"rhand_pose", | |
"trans", | |
"focal", | |
"princpt", | |
"img_size_wh", | |
"expr", | |
] | |
batch_smplx_params = dict() | |
batch_smplx_params["betas"] = shape_param.to(device) | |
batch_smplx_params['transform_mat_neutral_pose'] = transform_mat_neutral_pose | |
for key in keys: | |
batch_smplx_params[key] = motion_seq["smplx_params"][key][ | |
:, batch_i : batch_i + batch_size | |
].to(device) | |
res = lhm.animation_infer(gs_model_list, query_points, batch_smplx_params, | |
render_c2ws=motion_seq["render_c2ws"][ | |
:, batch_i : batch_i + batch_size | |
].to(device), | |
render_intrs=motion_seq["render_intrs"][ | |
:, batch_i : batch_i + batch_size | |
].to(device), | |
render_bg_colors=motion_seq["render_bg_colors"][ | |
:, batch_i : batch_i + batch_size | |
].to(device), | |
) | |
for accumulate_key in ["comp_rgb", "comp_mask"]: | |
if accumulate_key not in batch_dict: | |
batch_dict[accumulate_key] = [] | |
batch_dict[accumulate_key].append(res[accumulate_key].detach().cpu()) | |
del res | |
torch.cuda.empty_cache() | |
for accumulate_key in ["comp_rgb", "comp_mask"]: | |
batch_dict[accumulate_key] = torch.cat(batch_dict[accumulate_key], dim=0) | |
print(f"time elapsed: {time.time() - start_time}") | |
rgb = batch_dict["comp_rgb"].detach().cpu().numpy() # [Nv, H, W, 3], 0-1 | |
mask = batch_dict["comp_mask"].detach().cpu().numpy() # [Nv, H, W, 3], 0-1 | |
mask[mask < 0.5] = 0.0 | |
rgb = rgb * mask + (1 - mask) * 1 | |
rgb = np.clip(rgb * 255, 0, 255).astype(np.uint8) | |
if vis_motion: | |
# print(rgb.shape, motion_seq["vis_motion_render"].shape) | |
vis_ref_img = np.tile( | |
cv2.resize(vis_ref_img, (rgb[0].shape[1], rgb[0].shape[0]))[ | |
None, :, :, : | |
], | |
(rgb.shape[0], 1, 1, 1), | |
) | |
rgb = np.concatenate( | |
[rgb, motion_seq["vis_motion_render"], vis_ref_img], axis=2 | |
) | |
os.makedirs(os.path.dirname(dump_video_path), exist_ok=True) | |
images_to_video( | |
rgb, | |
output_path=dump_video_path, | |
fps=30, | |
gradio_codec=False, | |
verbose=True, | |
) | |
return dump_image_path, dump_video_path | |
# return rgb, dump_image_path, dump_video_path | |
# def core_fn_export(image, video_params, working_dir): | |
# rgb, dump_image_path, dump_video_path = core_fn(image=image, video_params=video_params, working_dir=working_dir) | |
# print("start to export the video.") | |
# images_to_video( | |
# rgb, | |
# output_path=dump_video_path, | |
# fps=30, | |
# gradio_codec=False, | |
# verbose=True, | |
# ) | |
# return dump_image_path, dump_video_path | |
_TITLE = '''LHM: Large Animatable Human Model''' | |
_DESCRIPTION = ''' | |
<strong>Reconstruct a human avatar in 0.2 seconds with A100!</strong> | |
''' | |
with gr.Blocks(analytics_enabled=False, delete_cache=[3600,3600]) as demo: | |
# </div> | |
logo_url = "./assets/rgba_logo_new.png" | |
logo_base64 = get_image_base64(logo_url) | |
gr.HTML( | |
f""" | |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> | |
<div> | |
<h1> <img src="{logo_base64}" style='height:35px; display:inline-block;'/> Large Animatable Human Model </h1> | |
</div> | |
</div> | |
""" | |
) | |
gr.HTML( | |
""" | |
<div style="display: flex; justify-content: center; align-items: center; text-align: center; margin: 20px; gap: 10px;"> | |
<a class="flex-item" href="https://arxiv.org/abs/2503.10625" target="_blank"> | |
<img src="https://img.shields.io/badge/Paper-arXiv-darkred.svg" alt="arXiv Paper"> | |
</a> | |
<a class="flex-item" href="https://lingtengqiu.github.io/LHM/" target="_blank"> | |
<img src="https://img.shields.io/badge/Project-LHM-blue" alt="Project Page"> | |
</a> | |
<a class="flex-item" href="https://github.com/aigc3d/LHM" target="_blank"> | |
<img src="https://img.shields.io/github/stars/aigc3d/LHM?label=Github%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars"> | |
</a> | |
<a class="flex-item" href="https://www.youtube.com/watch?v=tivEpz_yiEo" target="_blank"> | |
<img src="https://img.shields.io/badge/Youtube-Video-red.svg" alt="Video"> | |
</a> | |
</div> | |
""" | |
) | |
gr.HTML( | |
"""<p><h4 style="color: red;"> Notes 1: Glad to tell you that we have supported both full-body or half-body input! Try to test the robustness with half-body images!.</h4></p>""" | |
) | |
gr.HTML( | |
"""<p><h4 style="color: green;"> Notes 2: We drop ComfyUI Nodes of LHM on https://github.com/aigc3d/LHM/tree/feat/comfyui which support any character and any driven videos as input. Try it!</h4></p>""" | |
) | |
# DISPLAY | |
with gr.Row(): | |
with gr.Column(variant='panel', scale=1): | |
with gr.Tabs(elem_id="openlrm_input_image"): | |
with gr.TabItem('Input Image'): | |
with gr.Row(): | |
input_image = gr.Image(label="Input Image", image_mode="RGBA", height=480, width=270, sources="upload", type="numpy", elem_id="content_image") | |
# EXAMPLES | |
with gr.Row(): | |
examples = [ | |
['assets/sample_input/joker.jpg'], | |
['assets/sample_input/anime.png'], | |
['assets/sample_input/basket.png'], | |
['assets/sample_input/ai_woman1.JPG'], | |
['assets/sample_input/anime2.JPG'], | |
['assets/sample_input/anime3.JPG'], | |
['assets/sample_input/boy1.png'], | |
['assets/sample_input/choplin.jpg'], | |
['assets/sample_input/eins.JPG'], | |
['assets/sample_input/girl1.png'], | |
['assets/sample_input/girl2.png'], | |
['assets/sample_input/robot.jpg'], | |
] | |
gr.Examples( | |
examples=examples, | |
inputs=[input_image], | |
examples_per_page=20, | |
) | |
with gr.Column(): | |
with gr.Tabs(elem_id="openlrm_input_video"): | |
with gr.TabItem('Input Video'): | |
with gr.Row(): | |
video_input = gr.Video(label="Input Video",height=480, width=270, interactive=False) | |
examples = [ | |
# './assets/sample_motion/danaotiangong/danaotiangong_origin.mp4', | |
'./assets/sample_motion/ex5/ex5_origin.mp4', | |
# './assets/sample_motion/girl2/girl2_origin.mp4', | |
# './assets/sample_motion/jntm/jntm_origin.mp4', | |
'./assets/sample_motion/mimo1/mimo1_origin.mp4', | |
'./assets/sample_motion/mimo2/mimo2_origin.mp4', | |
'./assets/sample_motion/mimo4/mimo4_origin.mp4', | |
'./assets/sample_motion/mimo5/mimo5_origin.mp4', | |
'./assets/sample_motion/mimo6/mimo6_origin.mp4', | |
'./assets/sample_motion/nezha/nezha_origin.mp4', | |
'./assets/sample_motion/taiji/taiji_origin.mp4' | |
] | |
gr.Examples( | |
examples=examples, | |
inputs=[video_input], | |
examples_per_page=20, | |
) | |
with gr.Column(variant='panel', scale=1): | |
with gr.Tabs(elem_id="openlrm_processed_image"): | |
with gr.TabItem('Processed Image'): | |
with gr.Row(): | |
processed_image = gr.Image(label="Processed Image", image_mode="RGBA", type="filepath", elem_id="processed_image", height=480, width=270, interactive=False) | |
# SETTING | |
with gr.Row(): | |
with gr.Column(variant='panel', scale=1): | |
submit = gr.Button('Generate', elem_id="openlrm_generate", variant='primary') | |
# show video && ply model | |
with gr.Row(): | |
# with gr.Column(variant='panel', scale=1): | |
# with gr.Tabs(elem_id="openlrm_render_model"): | |
# with gr.TabItem('Rendered 3D Model'): | |
# with gr.Row(): | |
# output_model = gr.Model3D(label="Rendered 3D Model") | |
with gr.Column(variant='panel', scale=1): | |
with gr.Tabs(elem_id="openlrm_render_video"): | |
with gr.TabItem('Rendered Video'): | |
with gr.Row(): | |
output_video = gr.Video(label="Rendered Video", format="mp4", height=480, width=270, autoplay=True) | |
working_dir = gr.State() | |
submit.click( | |
fn=assert_input_image, | |
inputs=[input_image], | |
queue=False, | |
).success( | |
fn=prepare_working_dir, | |
outputs=[working_dir], | |
queue=False, | |
).success( | |
fn=core_fn, | |
inputs=[input_image, video_input, working_dir], # video_params refer to smpl dir | |
outputs=[processed_image, output_video], | |
) | |
demo.queue(max_size=1) | |
demo.launch() | |
def launch_gradio_app(): | |
os.environ.update({ | |
"APP_ENABLED": "1", | |
"APP_MODEL_NAME": "./exps/releases/video_human_benchmark/human-lrm-500M/step_060000/", | |
"APP_INFER": "./configs/inference/human-lrm-500M.yaml", | |
"APP_TYPE": "infer.human_lrm", | |
"NUMBA_THREADING_LAYER": 'omp', | |
}) | |
# from LHM.runners import REGISTRY_RUNNERS | |
# RunnerClass = REGISTRY_RUNNERS[os.getenv("APP_TYPE")] | |
# with RunnerClass() as runner: | |
# runner.to('cuda') | |
# demo_lhm(infer_impl=runner.infer) | |
facedetector = VGGHeadDetector( | |
"./pretrained_models/gagatracker/vgghead/vgg_heads_l.trcd", | |
device='cpu', | |
) | |
facedetector.to('cuda') | |
pose_estimator = PoseEstimator( | |
"./pretrained_models/human_model_files/", device='cpu' | |
) | |
pose_estimator.to('cuda') | |
pose_estimator.device = 'cuda' | |
cfg, cfg_train = parse_configs() | |
lhm = _build_model(cfg) | |
lhm.to('cuda') | |
demo_lhm(pose_estimator, facedetector, lhm, cfg) | |
if __name__ == '__main__': | |
launch_pretrained() | |
launch_env_not_compile_with_cuda() | |
launch_gradio_app() |