Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import cv2 | |
from PIL import Image | |
from torch.utils import data | |
from torchvision import transforms | |
from tqdm import tqdm | |
from .config import Config | |
from .image_proc import preproc | |
from .utils import path_to_image | |
Image.MAX_IMAGE_PIXELS = None # remove DecompressionBombWarning | |
config = Config() | |
_class_labels_TR_sorted = ( | |
"Airplane, Ant, Antenna, Archery, Axe, BabyCarriage, Bag, BalanceBeam, Balcony, Balloon, Basket, BasketballHoop, Beatle, Bed, Bee, Bench, Bicycle, " | |
"BicycleFrame, BicycleStand, Boat, Bonsai, BoomLift, Bridge, BunkBed, Butterfly, Button, Cable, CableLift, Cage, Camcorder, Cannon, Canoe, Car, " | |
"CarParkDropArm, Carriage, Cart, Caterpillar, CeilingLamp, Centipede, Chair, Clip, Clock, Clothes, CoatHanger, Comb, ConcretePumpTruck, Crack, Crane, " | |
"Cup, DentalChair, Desk, DeskChair, Diagram, DishRack, DoorHandle, Dragonfish, Dragonfly, Drum, Earphone, Easel, ElectricIron, Excavator, Eyeglasses, " | |
"Fan, Fence, Fencing, FerrisWheel, FireExtinguisher, Fishing, Flag, FloorLamp, Forklift, GasStation, Gate, Gear, Goal, Golf, GymEquipment, Hammock, " | |
"Handcart, Handcraft, Handrail, HangGlider, Harp, Harvester, Headset, Helicopter, Helmet, Hook, HorizontalBar, Hydrovalve, IroningTable, Jewelry, Key, " | |
"KidsPlayground, Kitchenware, Kite, Knife, Ladder, LaundryRack, Lightning, Lobster, Locust, Machine, MachineGun, MagazineRack, Mantis, Medal, MemorialArchway, " | |
"Microphone, Missile, MobileHolder, Monitor, Mosquito, Motorcycle, MovingTrolley, Mower, MusicPlayer, MusicStand, ObservationTower, Octopus, OilWell, " | |
"OlympicLogo, OperatingTable, OutdoorFitnessEquipment, Parachute, Pavilion, Piano, Pipe, PlowHarrow, PoleVault, Punchbag, Rack, Racket, Rifle, Ring, Robot, " | |
"RockClimbing, Rope, Sailboat, Satellite, Scaffold, Scale, Scissor, Scooter, Sculpture, Seadragon, Seahorse, Seal, SewingMachine, Ship, Shoe, ShoppingCart, " | |
"ShoppingTrolley, Shower, Shrimp, Signboard, Skateboarding, Skeleton, Skiing, Spade, SpeedBoat, Spider, Spoon, Stair, Stand, Stationary, SteeringWheel, " | |
"Stethoscope, Stool, Stove, StreetLamp, SweetStand, Swing, Sword, TV, Table, TableChair, TableLamp, TableTennis, Tank, Tapeline, Teapot, Telescope, Tent, " | |
"TobaccoPipe, Toy, Tractor, TrafficLight, TrafficSign, Trampoline, TransmissionTower, Tree, Tricycle, TrimmerCover, Tripod, Trombone, Truck, Trumpet, Tuba, " | |
"UAV, Umbrella, UnevenBars, UtilityPole, VacuumCleaner, Violin, Wakesurfing, Watch, WaterTower, WateringPot, Well, WellLid, Wheel, Wheelchair, WindTurbine, Windmill, WineGlass, WireWhisk, Yacht" | |
) | |
class_labels_TR_sorted = _class_labels_TR_sorted.split(", ") | |
class MyData(data.Dataset): | |
def __init__(self, datasets, image_size, is_train=True): | |
self.size_train = image_size | |
self.size_test = image_size | |
self.keep_size = not config.size | |
self.data_size = config.size | |
self.is_train = is_train | |
self.load_all = config.load_all | |
self.device = config.device | |
valid_extensions = [".png", ".jpg", ".PNG", ".JPG", ".JPEG"] | |
if self.is_train and config.auxiliary_classification: | |
self.cls_name2id = { | |
_name: _id for _id, _name in enumerate(class_labels_TR_sorted) | |
} | |
self.transform_image = transforms.Compose( | |
[ | |
transforms.Resize(self.data_size[::-1]), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
][self.load_all or self.keep_size :] | |
) | |
self.transform_label = transforms.Compose( | |
[ | |
transforms.Resize(self.data_size[::-1]), | |
transforms.ToTensor(), | |
][self.load_all or self.keep_size :] | |
) | |
dataset_root = os.path.join(config.data_root_dir, config.task) | |
# datasets can be a list of different datasets for training on combined sets. | |
self.image_paths = [] | |
for dataset in datasets.split("+"): | |
image_root = os.path.join(dataset_root, dataset, "im") | |
self.image_paths += [ | |
os.path.join(image_root, p) | |
for p in os.listdir(image_root) | |
if any(p.endswith(ext) for ext in valid_extensions) | |
] | |
self.label_paths = [] | |
for p in self.image_paths: | |
for ext in valid_extensions: | |
## 'im' and 'gt' may need modifying | |
p_gt = p.replace("/im/", "/gt/")[: -(len(p.split(".")[-1]) + 1)] + ext | |
file_exists = False | |
if os.path.exists(p_gt): | |
self.label_paths.append(p_gt) | |
file_exists = True | |
break | |
if not file_exists: | |
print("Not exists:", p_gt) | |
if len(self.label_paths) != len(self.image_paths): | |
set_image_paths = set( | |
[os.path.splitext(p.split(os.sep)[-1])[0] for p in self.image_paths] | |
) | |
set_label_paths = set( | |
[os.path.splitext(p.split(os.sep)[-1])[0] for p in self.label_paths] | |
) | |
print("Path diff:", set_image_paths - set_label_paths) | |
raise ValueError( | |
f"There are different numbers of images ({len(self.label_paths)}) and labels ({len(self.image_paths)})" | |
) | |
if self.load_all: | |
self.images_loaded, self.labels_loaded = [], [] | |
self.class_labels_loaded = [] | |
# for image_path, label_path in zip(self.image_paths, self.label_paths): | |
for image_path, label_path in tqdm( | |
zip(self.image_paths, self.label_paths), total=len(self.image_paths) | |
): | |
_image = path_to_image(image_path, size=config.size, color_type="rgb") | |
_label = path_to_image(label_path, size=config.size, color_type="gray") | |
self.images_loaded.append(_image) | |
self.labels_loaded.append(_label) | |
self.class_labels_loaded.append( | |
self.cls_name2id[label_path.split("/")[-1].split("#")[3]] | |
if self.is_train and config.auxiliary_classification | |
else -1 | |
) | |
def __getitem__(self, index): | |
if self.load_all: | |
image = self.images_loaded[index] | |
label = self.labels_loaded[index] | |
class_label = ( | |
self.class_labels_loaded[index] | |
if self.is_train and config.auxiliary_classification | |
else -1 | |
) | |
else: | |
image = path_to_image( | |
self.image_paths[index], size=config.size, color_type="rgb" | |
) | |
label = path_to_image( | |
self.label_paths[index], size=config.size, color_type="gray" | |
) | |
class_label = ( | |
self.cls_name2id[self.label_paths[index].split("/")[-1].split("#")[3]] | |
if self.is_train and config.auxiliary_classification | |
else -1 | |
) | |
# loading image and label | |
if self.is_train: | |
image, label = preproc(image, label, preproc_methods=config.preproc_methods) | |
# else: | |
# if _label.shape[0] > 2048 or _label.shape[1] > 2048: | |
# _image = cv2.resize(_image, (2048, 2048), interpolation=cv2.INTER_LINEAR) | |
# _label = cv2.resize(_label, (2048, 2048), interpolation=cv2.INTER_LINEAR) | |
image, label = self.transform_image(image), self.transform_label(label) | |
if self.is_train: | |
return image, label, class_label | |
else: | |
return image, label, self.label_paths[index] | |
def __len__(self): | |
return len(self.image_paths) | |