Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from tqdm import tqdm | |
import cv2 | |
from PIL import Image | |
import numpy as np | |
from scipy.ndimage import convolve, distance_transform_edt as bwdist | |
from skimage.morphology import skeletonize | |
from skimage.morphology import disk | |
from skimage.measure import label | |
_EPS = np.spacing(1) | |
_TYPE = np.float64 | |
def evaluator(gt_paths, pred_paths, metrics=['S', 'MAE', 'E', 'F', 'WF', 'MBA', 'BIoU', 'MSE', 'HCE'], verbose=False): | |
# define measures | |
if 'E' in metrics: | |
EM = EMeasure() | |
if 'S' in metrics: | |
SM = SMeasure() | |
if 'F' in metrics: | |
FM = FMeasure() | |
if 'MAE' in metrics: | |
MAE = MAEMeasure() | |
if 'MSE' in metrics: | |
MSE = MSEMeasure() | |
if 'WF' in metrics: | |
WFM = WeightedFMeasure() | |
if 'HCE' in metrics: | |
HCE = HCEMeasure() | |
if 'MBA' in metrics: | |
MBA = MBAMeasure() | |
if 'BIoU' in metrics: | |
BIoU = BIoUMeasure() | |
if isinstance(gt_paths, list) and isinstance(pred_paths, list): | |
# print(len(gt_paths), len(pred_paths)) | |
assert len(gt_paths) == len(pred_paths) | |
for idx_sample in tqdm(range(len(gt_paths)), total=len(gt_paths)) if verbose else range(len(gt_paths)): | |
gt = gt_paths[idx_sample] | |
pred = pred_paths[idx_sample] | |
pred = pred[:-4] + '.png' | |
valid_extensions = ['.png', '.jpg', '.PNG', '.JPG', '.JPEG'] | |
file_exists = False | |
for ext in valid_extensions: | |
if os.path.exists(pred[:-4] + ext): | |
pred = pred[:-4] + ext | |
file_exists = True | |
break | |
if file_exists: | |
pred_ary = cv2.imread(pred, cv2.IMREAD_GRAYSCALE) | |
else: | |
print('Not exists:', pred) | |
gt_ary = cv2.imread(gt, cv2.IMREAD_GRAYSCALE) | |
pred_ary = cv2.resize(pred_ary, (gt_ary.shape[1], gt_ary.shape[0])) | |
if 'E' in metrics: | |
EM.step(pred=pred_ary, gt=gt_ary) | |
if 'S' in metrics: | |
SM.step(pred=pred_ary, gt=gt_ary) | |
if 'F' in metrics: | |
FM.step(pred=pred_ary, gt=gt_ary) | |
if 'MAE' in metrics: | |
MAE.step(pred=pred_ary, gt=gt_ary) | |
if 'MSE' in metrics: | |
MSE.step(pred=pred_ary, gt=gt_ary) | |
if 'WF' in metrics: | |
WFM.step(pred=pred_ary, gt=gt_ary) | |
if 'HCE' in metrics: | |
ske_path = gt.replace('/gt/', '/ske/') | |
if os.path.exists(ske_path): | |
ske_ary = cv2.imread(ske_path, cv2.IMREAD_GRAYSCALE) | |
ske_ary = ske_ary > 128 | |
else: | |
ske_ary = skeletonize(gt_ary > 128) | |
ske_save_dir = os.path.join(*ske_path.split(os.sep)[:-1]) | |
if ske_path[0] == os.sep: | |
ske_save_dir = os.sep + ske_save_dir | |
os.makedirs(ske_save_dir, exist_ok=True) | |
cv2.imwrite(ske_path, ske_ary.astype(np.uint8) * 255) | |
HCE.step(pred=pred_ary, gt=gt_ary, gt_ske=ske_ary) | |
if 'MBA' in metrics: | |
MBA.step(pred=pred_ary, gt=gt_ary) | |
if 'BIoU' in metrics: | |
BIoU.step(pred=pred_ary, gt=gt_ary) | |
if 'E' in metrics: | |
em = EM.get_results()['em'] | |
else: | |
em = {'curve': np.array([np.float64(-1)]), 'adp': np.float64(-1)} | |
if 'S' in metrics: | |
sm = SM.get_results()['sm'] | |
else: | |
sm = np.float64(-1) | |
if 'F' in metrics: | |
fm = FM.get_results()['fm'] | |
else: | |
fm = {'curve': np.array([np.float64(-1)]), 'adp': np.float64(-1)} | |
if 'MAE' in metrics: | |
mae = MAE.get_results()['mae'] | |
else: | |
mae = np.float64(-1) | |
if 'MSE' in metrics: | |
mse = MSE.get_results()['mse'] | |
else: | |
mse = np.float64(-1) | |
if 'WF' in metrics: | |
wfm = WFM.get_results()['wfm'] | |
else: | |
wfm = np.float64(-1) | |
if 'HCE' in metrics: | |
hce = HCE.get_results()['hce'] | |
else: | |
hce = np.float64(-1) | |
if 'MBA' in metrics: | |
mba = MBA.get_results()['mba'] | |
else: | |
mba = np.float64(-1) | |
if 'BIoU' in metrics: | |
biou = BIoU.get_results()['biou'] | |
else: | |
biou = {'curve': np.array([np.float64(-1)])} | |
return em, sm, fm, mae, mse, wfm, hce, mba, biou | |
def _prepare_data(pred: np.ndarray, gt: np.ndarray) -> tuple: | |
gt = gt > 128 | |
pred = pred / 255 | |
if pred.max() != pred.min(): | |
pred = (pred - pred.min()) / (pred.max() - pred.min()) | |
return pred, gt | |
def _get_adaptive_threshold(matrix: np.ndarray, max_value: float = 1) -> float: | |
return min(2 * matrix.mean(), max_value) | |
class FMeasure(object): | |
def __init__(self, beta: float = 0.3): | |
self.beta = beta | |
self.precisions = [] | |
self.recalls = [] | |
self.adaptive_fms = [] | |
self.changeable_fms = [] | |
def step(self, pred: np.ndarray, gt: np.ndarray): | |
pred, gt = _prepare_data(pred, gt) | |
adaptive_fm = self.cal_adaptive_fm(pred=pred, gt=gt) | |
self.adaptive_fms.append(adaptive_fm) | |
precisions, recalls, changeable_fms = self.cal_pr(pred=pred, gt=gt) | |
self.precisions.append(precisions) | |
self.recalls.append(recalls) | |
self.changeable_fms.append(changeable_fms) | |
def cal_adaptive_fm(self, pred: np.ndarray, gt: np.ndarray) -> float: | |
adaptive_threshold = _get_adaptive_threshold(pred, max_value=1) | |
binary_predcition = pred >= adaptive_threshold | |
area_intersection = binary_predcition[gt].sum() | |
if area_intersection == 0: | |
adaptive_fm = 0 | |
else: | |
pre = area_intersection / np.count_nonzero(binary_predcition) | |
rec = area_intersection / np.count_nonzero(gt) | |
adaptive_fm = (1 + self.beta) * pre * rec / (self.beta * pre + rec) | |
return adaptive_fm | |
def cal_pr(self, pred: np.ndarray, gt: np.ndarray) -> tuple: | |
pred = (pred * 255).astype(np.uint8) | |
bins = np.linspace(0, 256, 257) | |
fg_hist, _ = np.histogram(pred[gt], bins=bins) | |
bg_hist, _ = np.histogram(pred[~gt], bins=bins) | |
fg_w_thrs = np.cumsum(np.flip(fg_hist), axis=0) | |
bg_w_thrs = np.cumsum(np.flip(bg_hist), axis=0) | |
TPs = fg_w_thrs | |
Ps = fg_w_thrs + bg_w_thrs | |
Ps[Ps == 0] = 1 | |
T = max(np.count_nonzero(gt), 1) | |
precisions = TPs / Ps | |
recalls = TPs / T | |
numerator = (1 + self.beta) * precisions * recalls | |
denominator = np.where(numerator == 0, 1, self.beta * precisions + recalls) | |
changeable_fms = numerator / denominator | |
return precisions, recalls, changeable_fms | |
def get_results(self) -> dict: | |
adaptive_fm = np.mean(np.array(self.adaptive_fms, _TYPE)) | |
changeable_fm = np.mean(np.array(self.changeable_fms, dtype=_TYPE), axis=0) | |
precision = np.mean(np.array(self.precisions, dtype=_TYPE), axis=0) # N, 256 | |
recall = np.mean(np.array(self.recalls, dtype=_TYPE), axis=0) # N, 256 | |
return dict(fm=dict(adp=adaptive_fm, curve=changeable_fm), | |
pr=dict(p=precision, r=recall)) | |
class MAEMeasure(object): | |
def __init__(self): | |
self.maes = [] | |
def step(self, pred: np.ndarray, gt: np.ndarray): | |
pred, gt = _prepare_data(pred, gt) | |
mae = self.cal_mae(pred, gt) | |
self.maes.append(mae) | |
def cal_mae(self, pred: np.ndarray, gt: np.ndarray) -> float: | |
mae = np.mean(np.abs(pred - gt)) | |
return mae | |
def get_results(self) -> dict: | |
mae = np.mean(np.array(self.maes, _TYPE)) | |
return dict(mae=mae) | |
class MSEMeasure(object): | |
def __init__(self): | |
self.mses = [] | |
def step(self, pred: np.ndarray, gt: np.ndarray): | |
pred, gt = _prepare_data(pred, gt) | |
mse = self.cal_mse(pred, gt) | |
self.mses.append(mse) | |
def cal_mse(self, pred: np.ndarray, gt: np.ndarray) -> float: | |
mse = np.mean((pred - gt) ** 2) | |
return mse | |
def get_results(self) -> dict: | |
mse = np.mean(np.array(self.mses, _TYPE)) | |
return dict(mse=mse) | |
class SMeasure(object): | |
def __init__(self, alpha: float = 0.5): | |
self.sms = [] | |
self.alpha = alpha | |
def step(self, pred: np.ndarray, gt: np.ndarray): | |
pred, gt = _prepare_data(pred=pred, gt=gt) | |
sm = self.cal_sm(pred, gt) | |
self.sms.append(sm) | |
def cal_sm(self, pred: np.ndarray, gt: np.ndarray) -> float: | |
y = np.mean(gt) | |
if y == 0: | |
sm = 1 - np.mean(pred) | |
elif y == 1: | |
sm = np.mean(pred) | |
else: | |
sm = self.alpha * self.object(pred, gt) + (1 - self.alpha) * self.region(pred, gt) | |
sm = max(0, sm) | |
return sm | |
def object(self, pred: np.ndarray, gt: np.ndarray) -> float: | |
fg = pred * gt | |
bg = (1 - pred) * (1 - gt) | |
u = np.mean(gt) | |
object_score = u * self.s_object(fg, gt) + (1 - u) * self.s_object(bg, 1 - gt) | |
return object_score | |
def s_object(self, pred: np.ndarray, gt: np.ndarray) -> float: | |
x = np.mean(pred[gt == 1]) | |
sigma_x = np.std(pred[gt == 1], ddof=1) | |
score = 2 * x / (np.power(x, 2) + 1 + sigma_x + _EPS) | |
return score | |
def region(self, pred: np.ndarray, gt: np.ndarray) -> float: | |
x, y = self.centroid(gt) | |
part_info = self.divide_with_xy(pred, gt, x, y) | |
w1, w2, w3, w4 = part_info['weight'] | |
pred1, pred2, pred3, pred4 = part_info['pred'] | |
gt1, gt2, gt3, gt4 = part_info['gt'] | |
score1 = self.ssim(pred1, gt1) | |
score2 = self.ssim(pred2, gt2) | |
score3 = self.ssim(pred3, gt3) | |
score4 = self.ssim(pred4, gt4) | |
return w1 * score1 + w2 * score2 + w3 * score3 + w4 * score4 | |
def centroid(self, matrix: np.ndarray) -> tuple: | |
h, w = matrix.shape | |
area_object = np.count_nonzero(matrix) | |
if area_object == 0: | |
x = np.round(w / 2) | |
y = np.round(h / 2) | |
else: | |
# More details can be found at: https://www.yuque.com/lart/blog/gpbigm | |
y, x = np.argwhere(matrix).mean(axis=0).round() | |
return int(x) + 1, int(y) + 1 | |
def divide_with_xy(self, pred: np.ndarray, gt: np.ndarray, x, y) -> dict: | |
h, w = gt.shape | |
area = h * w | |
gt_LT = gt[0:y, 0:x] | |
gt_RT = gt[0:y, x:w] | |
gt_LB = gt[y:h, 0:x] | |
gt_RB = gt[y:h, x:w] | |
pred_LT = pred[0:y, 0:x] | |
pred_RT = pred[0:y, x:w] | |
pred_LB = pred[y:h, 0:x] | |
pred_RB = pred[y:h, x:w] | |
w1 = x * y / area | |
w2 = y * (w - x) / area | |
w3 = (h - y) * x / area | |
w4 = 1 - w1 - w2 - w3 | |
return dict(gt=(gt_LT, gt_RT, gt_LB, gt_RB), | |
pred=(pred_LT, pred_RT, pred_LB, pred_RB), | |
weight=(w1, w2, w3, w4)) | |
def ssim(self, pred: np.ndarray, gt: np.ndarray) -> float: | |
h, w = pred.shape | |
N = h * w | |
x = np.mean(pred) | |
y = np.mean(gt) | |
sigma_x = np.sum((pred - x) ** 2) / (N - 1) | |
sigma_y = np.sum((gt - y) ** 2) / (N - 1) | |
sigma_xy = np.sum((pred - x) * (gt - y)) / (N - 1) | |
alpha = 4 * x * y * sigma_xy | |
beta = (x ** 2 + y ** 2) * (sigma_x + sigma_y) | |
if alpha != 0: | |
score = alpha / (beta + _EPS) | |
elif alpha == 0 and beta == 0: | |
score = 1 | |
else: | |
score = 0 | |
return score | |
def get_results(self) -> dict: | |
sm = np.mean(np.array(self.sms, dtype=_TYPE)) | |
return dict(sm=sm) | |
class EMeasure(object): | |
def __init__(self): | |
self.adaptive_ems = [] | |
self.changeable_ems = [] | |
def step(self, pred: np.ndarray, gt: np.ndarray): | |
pred, gt = _prepare_data(pred=pred, gt=gt) | |
self.gt_fg_numel = np.count_nonzero(gt) | |
self.gt_size = gt.shape[0] * gt.shape[1] | |
changeable_ems = self.cal_changeable_em(pred, gt) | |
self.changeable_ems.append(changeable_ems) | |
adaptive_em = self.cal_adaptive_em(pred, gt) | |
self.adaptive_ems.append(adaptive_em) | |
def cal_adaptive_em(self, pred: np.ndarray, gt: np.ndarray) -> float: | |
adaptive_threshold = _get_adaptive_threshold(pred, max_value=1) | |
adaptive_em = self.cal_em_with_threshold(pred, gt, threshold=adaptive_threshold) | |
return adaptive_em | |
def cal_changeable_em(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray: | |
changeable_ems = self.cal_em_with_cumsumhistogram(pred, gt) | |
return changeable_ems | |
def cal_em_with_threshold(self, pred: np.ndarray, gt: np.ndarray, threshold: float) -> float: | |
binarized_pred = pred >= threshold | |
fg_fg_numel = np.count_nonzero(binarized_pred & gt) | |
fg_bg_numel = np.count_nonzero(binarized_pred & ~gt) | |
fg___numel = fg_fg_numel + fg_bg_numel | |
bg___numel = self.gt_size - fg___numel | |
if self.gt_fg_numel == 0: | |
enhanced_matrix_sum = bg___numel | |
elif self.gt_fg_numel == self.gt_size: | |
enhanced_matrix_sum = fg___numel | |
else: | |
parts_numel, combinations = self.generate_parts_numel_combinations( | |
fg_fg_numel=fg_fg_numel, fg_bg_numel=fg_bg_numel, | |
pred_fg_numel=fg___numel, pred_bg_numel=bg___numel, | |
) | |
results_parts = [] | |
for i, (part_numel, combination) in enumerate(zip(parts_numel, combinations)): | |
align_matrix_value = 2 * (combination[0] * combination[1]) / \ | |
(combination[0] ** 2 + combination[1] ** 2 + _EPS) | |
enhanced_matrix_value = (align_matrix_value + 1) ** 2 / 4 | |
results_parts.append(enhanced_matrix_value * part_numel) | |
enhanced_matrix_sum = sum(results_parts) | |
em = enhanced_matrix_sum / (self.gt_size - 1 + _EPS) | |
return em | |
def cal_em_with_cumsumhistogram(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray: | |
pred = (pred * 255).astype(np.uint8) | |
bins = np.linspace(0, 256, 257) | |
fg_fg_hist, _ = np.histogram(pred[gt], bins=bins) | |
fg_bg_hist, _ = np.histogram(pred[~gt], bins=bins) | |
fg_fg_numel_w_thrs = np.cumsum(np.flip(fg_fg_hist), axis=0) | |
fg_bg_numel_w_thrs = np.cumsum(np.flip(fg_bg_hist), axis=0) | |
fg___numel_w_thrs = fg_fg_numel_w_thrs + fg_bg_numel_w_thrs | |
bg___numel_w_thrs = self.gt_size - fg___numel_w_thrs | |
if self.gt_fg_numel == 0: | |
enhanced_matrix_sum = bg___numel_w_thrs | |
elif self.gt_fg_numel == self.gt_size: | |
enhanced_matrix_sum = fg___numel_w_thrs | |
else: | |
parts_numel_w_thrs, combinations = self.generate_parts_numel_combinations( | |
fg_fg_numel=fg_fg_numel_w_thrs, fg_bg_numel=fg_bg_numel_w_thrs, | |
pred_fg_numel=fg___numel_w_thrs, pred_bg_numel=bg___numel_w_thrs, | |
) | |
results_parts = np.empty(shape=(4, 256), dtype=np.float64) | |
for i, (part_numel, combination) in enumerate(zip(parts_numel_w_thrs, combinations)): | |
align_matrix_value = 2 * (combination[0] * combination[1]) / \ | |
(combination[0] ** 2 + combination[1] ** 2 + _EPS) | |
enhanced_matrix_value = (align_matrix_value + 1) ** 2 / 4 | |
results_parts[i] = enhanced_matrix_value * part_numel | |
enhanced_matrix_sum = results_parts.sum(axis=0) | |
em = enhanced_matrix_sum / (self.gt_size - 1 + _EPS) | |
return em | |
def generate_parts_numel_combinations(self, fg_fg_numel, fg_bg_numel, pred_fg_numel, pred_bg_numel): | |
bg_fg_numel = self.gt_fg_numel - fg_fg_numel | |
bg_bg_numel = pred_bg_numel - bg_fg_numel | |
parts_numel = [fg_fg_numel, fg_bg_numel, bg_fg_numel, bg_bg_numel] | |
mean_pred_value = pred_fg_numel / self.gt_size | |
mean_gt_value = self.gt_fg_numel / self.gt_size | |
demeaned_pred_fg_value = 1 - mean_pred_value | |
demeaned_pred_bg_value = 0 - mean_pred_value | |
demeaned_gt_fg_value = 1 - mean_gt_value | |
demeaned_gt_bg_value = 0 - mean_gt_value | |
combinations = [ | |
(demeaned_pred_fg_value, demeaned_gt_fg_value), | |
(demeaned_pred_fg_value, demeaned_gt_bg_value), | |
(demeaned_pred_bg_value, demeaned_gt_fg_value), | |
(demeaned_pred_bg_value, demeaned_gt_bg_value) | |
] | |
return parts_numel, combinations | |
def get_results(self) -> dict: | |
adaptive_em = np.mean(np.array(self.adaptive_ems, dtype=_TYPE)) | |
changeable_em = np.mean(np.array(self.changeable_ems, dtype=_TYPE), axis=0) | |
return dict(em=dict(adp=adaptive_em, curve=changeable_em)) | |
class WeightedFMeasure(object): | |
def __init__(self, beta: float = 1): | |
self.beta = beta | |
self.weighted_fms = [] | |
def step(self, pred: np.ndarray, gt: np.ndarray): | |
pred, gt = _prepare_data(pred=pred, gt=gt) | |
if np.all(~gt): | |
wfm = 0 | |
else: | |
wfm = self.cal_wfm(pred, gt) | |
self.weighted_fms.append(wfm) | |
def cal_wfm(self, pred: np.ndarray, gt: np.ndarray) -> float: | |
# [Dst,IDXT] = bwdist(dGT); | |
Dst, Idxt = bwdist(gt == 0, return_indices=True) | |
# %Pixel dependency | |
# E = abs(FG-dGT); | |
E = np.abs(pred - gt) | |
Et = np.copy(E) | |
Et[gt == 0] = Et[Idxt[0][gt == 0], Idxt[1][gt == 0]] | |
# K = fspecial('gaussian',7,5); | |
# EA = imfilter(Et,K); | |
K = self.matlab_style_gauss2D((7, 7), sigma=5) | |
EA = convolve(Et, weights=K, mode="constant", cval=0) | |
# MIN_E_EA = E; | |
# MIN_E_EA(GT & EA<E) = EA(GT & EA<E); | |
MIN_E_EA = np.where(gt & (EA < E), EA, E) | |
# %Pixel importance | |
B = np.where(gt == 0, 2 - np.exp(np.log(0.5) / 5 * Dst), np.ones_like(gt)) | |
Ew = MIN_E_EA * B | |
TPw = np.sum(gt) - np.sum(Ew[gt == 1]) | |
FPw = np.sum(Ew[gt == 0]) | |
R = 1 - np.mean(Ew[gt == 1]) | |
P = TPw / (TPw + FPw + _EPS) | |
# % Q = (1+Beta^2)*(R*P)./(eps+R+(Beta.*P)); | |
Q = (1 + self.beta) * R * P / (R + self.beta * P + _EPS) | |
return Q | |
def matlab_style_gauss2D(self, shape: tuple = (7, 7), sigma: int = 5) -> np.ndarray: | |
""" | |
2D gaussian mask - should give the same result as MATLAB's | |
fspecial('gaussian',[shape],[sigma]) | |
""" | |
m, n = [(ss - 1) / 2 for ss in shape] | |
y, x = np.ogrid[-m: m + 1, -n: n + 1] | |
h = np.exp(-(x * x + y * y) / (2 * sigma * sigma)) | |
h[h < np.finfo(h.dtype).eps * h.max()] = 0 | |
sumh = h.sum() | |
if sumh != 0: | |
h /= sumh | |
return h | |
def get_results(self) -> dict: | |
weighted_fm = np.mean(np.array(self.weighted_fms, dtype=_TYPE)) | |
return dict(wfm=weighted_fm) | |
class HCEMeasure(object): | |
def __init__(self): | |
self.hces = [] | |
def step(self, pred: np.ndarray, gt: np.ndarray, gt_ske): | |
# pred, gt = _prepare_data(pred, gt) | |
hce = self.cal_hce(pred, gt, gt_ske) | |
self.hces.append(hce) | |
def get_results(self) -> dict: | |
hce = np.mean(np.array(self.hces, _TYPE)) | |
return dict(hce=hce) | |
def cal_hce(self, pred: np.ndarray, gt: np.ndarray, gt_ske: np.ndarray, relax=5, epsilon=2.0) -> float: | |
# Binarize gt | |
if(len(gt.shape)>2): | |
gt = gt[:, :, 0] | |
epsilon_gt = 128#(np.amin(gt)+np.amax(gt))/2.0 | |
gt = (gt>epsilon_gt).astype(np.uint8) | |
# Binarize pred | |
if(len(pred.shape)>2): | |
pred = pred[:, :, 0] | |
epsilon_pred = 128#(np.amin(pred)+np.amax(pred))/2.0 | |
pred = (pred>epsilon_pred).astype(np.uint8) | |
Union = np.logical_or(gt, pred) | |
TP = np.logical_and(gt, pred) | |
FP = pred - TP | |
FN = gt - TP | |
# relax the Union of gt and pred | |
Union_erode = Union.copy() | |
Union_erode = cv2.erode(Union_erode.astype(np.uint8), disk(1), iterations=relax) | |
# --- get the relaxed False Positive regions for computing the human efforts in correcting them --- | |
FP_ = np.logical_and(FP, Union_erode) # get the relaxed FP | |
for i in range(0, relax): | |
FP_ = cv2.dilate(FP_.astype(np.uint8), disk(1)) | |
FP_ = np.logical_and(FP_, 1-np.logical_or(TP, FN)) | |
FP_ = np.logical_and(FP, FP_) | |
# --- get the relaxed False Negative regions for computing the human efforts in correcting them --- | |
FN_ = np.logical_and(FN, Union_erode) # preserve the structural components of FN | |
## recover the FN, where pixels are not close to the TP borders | |
for i in range(0, relax): | |
FN_ = cv2.dilate(FN_.astype(np.uint8), disk(1)) | |
FN_ = np.logical_and(FN_, 1-np.logical_or(TP, FP)) | |
FN_ = np.logical_and(FN, FN_) | |
FN_ = np.logical_or(FN_, np.logical_xor(gt_ske, np.logical_and(TP, gt_ske))) # preserve the structural components of FN | |
## 2. =============Find exact polygon control points and independent regions============== | |
## find contours from FP_ | |
ctrs_FP, hier_FP = cv2.findContours(FP_.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) | |
## find control points and independent regions for human correction | |
bdies_FP, indep_cnt_FP = self.filter_bdy_cond(ctrs_FP, FP_, np.logical_or(TP,FN_)) | |
## find contours from FN_ | |
ctrs_FN, hier_FN = cv2.findContours(FN_.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) | |
## find control points and independent regions for human correction | |
bdies_FN, indep_cnt_FN = self.filter_bdy_cond(ctrs_FN, FN_, 1-np.logical_or(np.logical_or(TP, FP_), FN_)) | |
poly_FP, poly_FP_len, poly_FP_point_cnt = self.approximate_RDP(bdies_FP, epsilon=epsilon) | |
poly_FN, poly_FN_len, poly_FN_point_cnt = self.approximate_RDP(bdies_FN, epsilon=epsilon) | |
# FP_points+FP_indep+FN_points+FN_indep | |
return poly_FP_point_cnt+indep_cnt_FP+poly_FN_point_cnt+indep_cnt_FN | |
def filter_bdy_cond(self, bdy_, mask, cond): | |
cond = cv2.dilate(cond.astype(np.uint8), disk(1)) | |
labels = label(mask) # find the connected regions | |
lbls = np.unique(labels) # the indices of the connected regions | |
indep = np.ones(lbls.shape[0]) # the label of each connected regions | |
indep[0] = 0 # 0 indicate the background region | |
boundaries = [] | |
h,w = cond.shape[0:2] | |
ind_map = np.zeros((h, w)) | |
indep_cnt = 0 | |
for i in range(0, len(bdy_)): | |
tmp_bdies = [] | |
tmp_bdy = [] | |
for j in range(0, bdy_[i].shape[0]): | |
r, c = bdy_[i][j,0,1],bdy_[i][j,0,0] | |
if(np.sum(cond[r, c])==0 or ind_map[r, c]!=0): | |
if(len(tmp_bdy)>0): | |
tmp_bdies.append(tmp_bdy) | |
tmp_bdy = [] | |
continue | |
tmp_bdy.append([c, r]) | |
ind_map[r, c] = ind_map[r, c] + 1 | |
indep[labels[r, c]] = 0 # indicates part of the boundary of this region needs human correction | |
if(len(tmp_bdy)>0): | |
tmp_bdies.append(tmp_bdy) | |
# check if the first and the last boundaries are connected | |
# if yes, invert the first boundary and attach it after the last boundary | |
if(len(tmp_bdies)>1): | |
first_x, first_y = tmp_bdies[0][0] | |
last_x, last_y = tmp_bdies[-1][-1] | |
if((abs(first_x-last_x)==1 and first_y==last_y) or | |
(first_x==last_x and abs(first_y-last_y)==1) or | |
(abs(first_x-last_x)==1 and abs(first_y-last_y)==1) | |
): | |
tmp_bdies[-1].extend(tmp_bdies[0][::-1]) | |
del tmp_bdies[0] | |
for k in range(0, len(tmp_bdies)): | |
tmp_bdies[k] = np.array(tmp_bdies[k])[:, np.newaxis, :] | |
if(len(tmp_bdies)>0): | |
boundaries.extend(tmp_bdies) | |
return boundaries, np.sum(indep) | |
# this function approximate each boundary by DP algorithm | |
# https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm | |
def approximate_RDP(self, boundaries, epsilon=1.0): | |
boundaries_ = [] | |
boundaries_len_ = [] | |
pixel_cnt_ = 0 | |
# polygon approximate of each boundary | |
for i in range(0, len(boundaries)): | |
boundaries_.append(cv2.approxPolyDP(boundaries[i], epsilon, False)) | |
# count the control points number of each boundary and the total control points number of all the boundaries | |
for i in range(0, len(boundaries_)): | |
boundaries_len_.append(len(boundaries_[i])) | |
pixel_cnt_ = pixel_cnt_ + len(boundaries_[i]) | |
return boundaries_, boundaries_len_, pixel_cnt_ | |
class MBAMeasure(object): | |
def __init__(self): | |
self.bas = [] | |
self.all_h = 0 | |
self.all_w = 0 | |
self.all_max = 0 | |
def step(self, pred: np.ndarray, gt: np.ndarray): | |
# pred, gt = _prepare_data(pred, gt) | |
refined = gt.copy() | |
rmin = cmin = 0 | |
rmax, cmax = gt.shape | |
self.all_h += rmax | |
self.all_w += cmax | |
self.all_max += max(rmax, cmax) | |
refined_h, refined_w = refined.shape | |
if refined_h != cmax: | |
refined = np.array(Image.fromarray(pred).resize((cmax, rmax), Image.BILINEAR)) | |
if not(gt.sum() < 32*32): | |
if not((cmax==cmin) or (rmax==rmin)): | |
class_refined_prob = np.array(Image.fromarray(pred).resize((cmax-cmin, rmax-rmin), Image.BILINEAR)) | |
refined[rmin:rmax, cmin:cmax] = class_refined_prob | |
pred = pred > 128 | |
gt = gt > 128 | |
ba = self.cal_ba(pred, gt) | |
self.bas.append(ba) | |
def get_disk_kernel(self, radius): | |
return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (radius*2+1, radius*2+1)) | |
def cal_ba(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray: | |
""" | |
Calculate the mean absolute error. | |
:return: ba | |
""" | |
gt = gt.astype(np.uint8) | |
pred = pred.astype(np.uint8) | |
h, w = gt.shape | |
min_radius = 1 | |
max_radius = (w+h)/300 | |
num_steps = 5 | |
pred_acc = [None] * num_steps | |
for i in range(num_steps): | |
curr_radius = min_radius + int((max_radius-min_radius)/num_steps*i) | |
kernel = self.get_disk_kernel(curr_radius) | |
boundary_region = cv2.morphologyEx(gt, cv2.MORPH_GRADIENT, kernel) > 0 | |
gt_in_bound = gt[boundary_region] | |
pred_in_bound = pred[boundary_region] | |
num_edge_pixels = (boundary_region).sum() | |
num_pred_gd_pix = ((gt_in_bound) * (pred_in_bound) + (1-gt_in_bound) * (1-pred_in_bound)).sum() | |
pred_acc[i] = num_pred_gd_pix / num_edge_pixels | |
ba = sum(pred_acc)/num_steps | |
return ba | |
def get_results(self) -> dict: | |
mba = np.mean(np.array(self.bas, _TYPE)) | |
return dict(mba=mba) | |
class BIoUMeasure(object): | |
def __init__(self, dilation_ratio=0.02): | |
self.bious = [] | |
self.dilation_ratio = dilation_ratio | |
def mask_to_boundary(self, mask): | |
h, w = mask.shape | |
img_diag = np.sqrt(h ** 2 + w ** 2) | |
dilation = int(round(self.dilation_ratio * img_diag)) | |
if dilation < 1: | |
dilation = 1 | |
# Pad image so mask truncated by the image border is also considered as boundary. | |
new_mask = cv2.copyMakeBorder(mask, 1, 1, 1, 1, cv2.BORDER_CONSTANT, value=0) | |
kernel = np.ones((3, 3), dtype=np.uint8) | |
new_mask_erode = cv2.erode(new_mask, kernel, iterations=dilation) | |
mask_erode = new_mask_erode[1 : h + 1, 1 : w + 1] | |
# G_d intersects G in the paper. | |
return mask - mask_erode | |
def step(self, pred: np.ndarray, gt: np.ndarray): | |
pred, gt = _prepare_data(pred, gt) | |
bious = self.cal_biou(pred=pred, gt=gt) | |
self.bious.append(bious) | |
def cal_biou(self, pred, gt): | |
pred = (pred * 255).astype(np.uint8) | |
pred = self.mask_to_boundary(pred) | |
gt = (gt * 255).astype(np.uint8) | |
gt = self.mask_to_boundary(gt) | |
gt = gt > 128 | |
bins = np.linspace(0, 256, 257) | |
fg_hist, _ = np.histogram(pred[gt], bins=bins) # ture positive | |
bg_hist, _ = np.histogram(pred[~gt], bins=bins) # false positive | |
fg_w_thrs = np.cumsum(np.flip(fg_hist), axis=0) | |
bg_w_thrs = np.cumsum(np.flip(bg_hist), axis=0) | |
TPs = fg_w_thrs | |
Ps = fg_w_thrs + bg_w_thrs # positives | |
Ps[Ps == 0] = 1 | |
T = max(np.count_nonzero(gt), 1) | |
ious = TPs / (T + bg_w_thrs) | |
return ious | |
def get_results(self) -> dict: | |
biou = np.mean(np.array(self.bious, dtype=_TYPE), axis=0) | |
return dict(biou=dict(curve=biou)) | |