Spaces:
Running
on
Zero
Running
on
Zero
import random | |
from PIL import Image, ImageEnhance | |
import numpy as np | |
import cv2 | |
def refine_foreground(image, mask, r=90): | |
if mask.size != image.size: | |
mask = mask.resize(image.size) | |
image = np.array(image) / 255.0 | |
mask = np.array(mask) / 255.0 | |
estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r) | |
image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8)) | |
return image_masked | |
def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90): | |
# Thanks to the source: https://github.com/Photoroom/fast-foreground-estimation | |
alpha = alpha[:, :, None] | |
F, blur_B = FB_blur_fusion_foreground_estimator( | |
image, image, image, alpha, r) | |
return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0] | |
def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90): | |
if isinstance(image, Image.Image): | |
image = np.array(image) / 255.0 | |
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None] | |
blurred_FA = cv2.blur(F * alpha, (r, r)) | |
blurred_F = blurred_FA / (blurred_alpha + 1e-5) | |
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r)) | |
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5) | |
F = blurred_F + alpha * \ | |
(image - alpha * blurred_F - (1 - alpha) * blurred_B) | |
F = np.clip(F, 0, 1) | |
return F, blurred_B | |
def preproc(image, label, preproc_methods=['flip']): | |
if 'flip' in preproc_methods: | |
image, label = cv_random_flip(image, label) | |
if 'crop' in preproc_methods: | |
image, label = random_crop(image, label) | |
if 'rotate' in preproc_methods: | |
image, label = random_rotate(image, label) | |
if 'enhance' in preproc_methods: | |
image = color_enhance(image) | |
if 'pepper' in preproc_methods: | |
image = random_pepper(image) | |
return image, label | |
def cv_random_flip(img, label): | |
if random.random() > 0.5: | |
img = img.transpose(Image.FLIP_LEFT_RIGHT) | |
label = label.transpose(Image.FLIP_LEFT_RIGHT) | |
return img, label | |
def random_crop(image, label): | |
border = 30 | |
image_width = image.size[0] | |
image_height = image.size[1] | |
border = int(min(image_width, image_height) * 0.1) | |
crop_win_width = np.random.randint(image_width - border, image_width) | |
crop_win_height = np.random.randint(image_height - border, image_height) | |
random_region = ( | |
(image_width - crop_win_width) >> 1, (image_height - crop_win_height) >> 1, (image_width + crop_win_width) >> 1, | |
(image_height + crop_win_height) >> 1) | |
return image.crop(random_region), label.crop(random_region) | |
def random_rotate(image, label, angle=15): | |
mode = Image.BICUBIC | |
if random.random() > 0.8: | |
random_angle = np.random.randint(-angle, angle) | |
image = image.rotate(random_angle, mode) | |
label = label.rotate(random_angle, mode) | |
return image, label | |
def color_enhance(image): | |
bright_intensity = random.randint(5, 15) / 10.0 | |
image = ImageEnhance.Brightness(image).enhance(bright_intensity) | |
contrast_intensity = random.randint(5, 15) / 10.0 | |
image = ImageEnhance.Contrast(image).enhance(contrast_intensity) | |
color_intensity = random.randint(0, 20) / 10.0 | |
image = ImageEnhance.Color(image).enhance(color_intensity) | |
sharp_intensity = random.randint(0, 30) / 10.0 | |
image = ImageEnhance.Sharpness(image).enhance(sharp_intensity) | |
return image | |
def random_gaussian(image, mean=0.1, sigma=0.35): | |
def gaussianNoisy(im, mean=mean, sigma=sigma): | |
for _i in range(len(im)): | |
im[_i] += random.gauss(mean, sigma) | |
return im | |
img = np.asarray(image) | |
width, height = img.shape | |
img = gaussianNoisy(img[:].flatten(), mean, sigma) | |
img = img.reshape([width, height]) | |
return Image.fromarray(np.uint8(img)) | |
def random_pepper(img, N=0.0015): | |
img = np.array(img) | |
noiseNum = int(N * img.shape[0] * img.shape[1]) | |
for i in range(noiseNum): | |
randX = random.randint(0, img.shape[0] - 1) | |
randY = random.randint(0, img.shape[1] - 1) | |
img[randX, randY] = random.randint(0, 1) * 255 | |
return Image.fromarray(img) | |