Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
from huggingface_hub import PyTorchModelHubMixin | |
from kornia.filters import laplacian | |
from engine.BiRefNet.config import Config | |
from engine.BiRefNet.dataset import class_labels_TR_sorted | |
from .backbones.build_backbone import build_backbone | |
from .modules.aspp import ASPP, ASPPDeformable | |
from .modules.decoder_blocks import BasicDecBlk, ResBlk | |
from .modules.lateral_blocks import BasicLatBlk | |
from .refinement.refiner import Refiner, RefinerPVTInChannels4, RefUNet | |
from .refinement.stem_layer import StemLayer | |
def image2patches( | |
image, | |
grid_h=2, | |
grid_w=2, | |
patch_ref=None, | |
transformation="b c (hg h) (wg w) -> (b hg wg) c h w", | |
): | |
if patch_ref is not None: | |
grid_h, grid_w = ( | |
image.shape[-2] // patch_ref.shape[-2], | |
image.shape[-1] // patch_ref.shape[-1], | |
) | |
patches = rearrange(image, transformation, hg=grid_h, wg=grid_w) | |
return patches | |
def patches2image( | |
patches, | |
grid_h=2, | |
grid_w=2, | |
patch_ref=None, | |
transformation="(b hg wg) c h w -> b c (hg h) (wg w)", | |
): | |
if patch_ref is not None: | |
grid_h, grid_w = ( | |
patch_ref.shape[-2] // patches[0].shape[-2], | |
patch_ref.shape[-1] // patches[0].shape[-1], | |
) | |
image = rearrange(patches, transformation, hg=grid_h, wg=grid_w) | |
return image | |
class BiRefNet( | |
nn.Module, | |
PyTorchModelHubMixin, | |
library_name="birefnet", | |
repo_url="https://github.com/ZhengPeng7/BiRefNet", | |
tags=[ | |
"Image Segmentation", | |
"Background Removal", | |
"Mask Generation", | |
"Dichotomous Image Segmentation", | |
"Camouflaged Object Detection", | |
"Salient Object Detection", | |
], | |
): | |
def __init__(self, bb_pretrained=True): | |
super(BiRefNet, self).__init__() | |
self.config = Config() | |
self.epoch = 1 | |
self.bb = build_backbone(self.config.bb, pretrained=bb_pretrained) | |
channels = self.config.lateral_channels_in_collection | |
if self.config.auxiliary_classification: | |
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | |
self.cls_head = nn.Sequential( | |
nn.Linear(channels[0], len(class_labels_TR_sorted)) | |
) | |
if self.config.squeeze_block: | |
self.squeeze_module = nn.Sequential( | |
*[ | |
eval(self.config.squeeze_block.split("_x")[0])( | |
channels[0] + sum(self.config.cxt), channels[0] | |
) | |
for _ in range(eval(self.config.squeeze_block.split("_x")[1])) | |
] | |
) | |
self.decoder = Decoder(channels) | |
if self.config.ender: | |
self.dec_end = nn.Sequential( | |
nn.Conv2d(1, 16, 3, 1, 1), | |
nn.Conv2d(16, 1, 3, 1, 1), | |
nn.ReLU(inplace=True), | |
) | |
# refine patch-level segmentation | |
if self.config.refine: | |
if self.config.refine == "itself": | |
self.stem_layer = StemLayer( | |
in_channels=3 + 1, | |
inter_channels=48, | |
out_channels=3, | |
norm_layer="BN" if self.config.batch_size > 1 else "LN", | |
) | |
else: | |
self.refiner = eval( | |
"{}({})".format(self.config.refine, "in_channels=3+1") | |
) | |
if self.config.freeze_bb: | |
# Freeze the backbone... | |
print(self.named_parameters()) | |
for key, value in self.named_parameters(): | |
if "bb." in key and "refiner." not in key: | |
value.requires_grad = False | |
def forward_enc(self, x): | |
if self.config.bb in ["vgg16", "vgg16bn", "resnet50"]: | |
x1 = self.bb.conv1(x) | |
x2 = self.bb.conv2(x1) | |
x3 = self.bb.conv3(x2) | |
x4 = self.bb.conv4(x3) | |
else: | |
x1, x2, x3, x4 = self.bb(x) | |
if self.config.mul_scl_ipt == "cat": | |
B, C, H, W = x.shape | |
x1_, x2_, x3_, x4_ = self.bb( | |
F.interpolate( | |
x, size=(H // 2, W // 2), mode="bilinear", align_corners=True | |
) | |
) | |
x1 = torch.cat( | |
[ | |
x1, | |
F.interpolate( | |
x1_, size=x1.shape[2:], mode="bilinear", align_corners=True | |
), | |
], | |
dim=1, | |
) | |
x2 = torch.cat( | |
[ | |
x2, | |
F.interpolate( | |
x2_, size=x2.shape[2:], mode="bilinear", align_corners=True | |
), | |
], | |
dim=1, | |
) | |
x3 = torch.cat( | |
[ | |
x3, | |
F.interpolate( | |
x3_, size=x3.shape[2:], mode="bilinear", align_corners=True | |
), | |
], | |
dim=1, | |
) | |
x4 = torch.cat( | |
[ | |
x4, | |
F.interpolate( | |
x4_, size=x4.shape[2:], mode="bilinear", align_corners=True | |
), | |
], | |
dim=1, | |
) | |
elif self.config.mul_scl_ipt == "add": | |
B, C, H, W = x.shape | |
x1_, x2_, x3_, x4_ = self.bb( | |
F.interpolate( | |
x, size=(H // 2, W // 2), mode="bilinear", align_corners=True | |
) | |
) | |
x1 = x1 + F.interpolate( | |
x1_, size=x1.shape[2:], mode="bilinear", align_corners=True | |
) | |
x2 = x2 + F.interpolate( | |
x2_, size=x2.shape[2:], mode="bilinear", align_corners=True | |
) | |
x3 = x3 + F.interpolate( | |
x3_, size=x3.shape[2:], mode="bilinear", align_corners=True | |
) | |
x4 = x4 + F.interpolate( | |
x4_, size=x4.shape[2:], mode="bilinear", align_corners=True | |
) | |
class_preds = ( | |
self.cls_head(self.avgpool(x4).view(x4.shape[0], -1)) | |
if self.training and self.config.auxiliary_classification | |
else None | |
) | |
if self.config.cxt: | |
x4 = torch.cat( | |
( | |
*[ | |
F.interpolate( | |
x1, size=x4.shape[2:], mode="bilinear", align_corners=True | |
), | |
F.interpolate( | |
x2, size=x4.shape[2:], mode="bilinear", align_corners=True | |
), | |
F.interpolate( | |
x3, size=x4.shape[2:], mode="bilinear", align_corners=True | |
), | |
][-len(self.config.cxt) :], | |
x4, | |
), | |
dim=1, | |
) | |
return (x1, x2, x3, x4), class_preds | |
def forward_ori(self, x): | |
########## Encoder ########## | |
(x1, x2, x3, x4), class_preds = self.forward_enc(x) | |
if self.config.squeeze_block: | |
x4 = self.squeeze_module(x4) | |
########## Decoder ########## | |
features = [x, x1, x2, x3, x4] | |
if self.training and self.config.out_ref: | |
features.append(laplacian(torch.mean(x, dim=1).unsqueeze(1), kernel_size=5)) | |
scaled_preds = self.decoder(features) | |
return scaled_preds, class_preds | |
def forward(self, x): | |
scaled_preds, class_preds = self.forward_ori(x) | |
class_preds_lst = [class_preds] | |
return [scaled_preds, class_preds_lst] if self.training else scaled_preds | |
class Decoder(nn.Module): | |
def __init__(self, channels): | |
super(Decoder, self).__init__() | |
self.config = Config() | |
DecoderBlock = eval(self.config.dec_blk) | |
LateralBlock = eval(self.config.lat_blk) | |
if self.config.dec_ipt: | |
self.split = self.config.dec_ipt_split | |
N_dec_ipt = 64 | |
DBlock = SimpleConvs | |
ic = 64 | |
ipt_cha_opt = 1 | |
self.ipt_blk5 = DBlock( | |
2**10 * 3 if self.split else 3, | |
[N_dec_ipt, channels[0] // 8][ipt_cha_opt], | |
inter_channels=ic, | |
) | |
self.ipt_blk4 = DBlock( | |
2**8 * 3 if self.split else 3, | |
[N_dec_ipt, channels[0] // 8][ipt_cha_opt], | |
inter_channels=ic, | |
) | |
self.ipt_blk3 = DBlock( | |
2**6 * 3 if self.split else 3, | |
[N_dec_ipt, channels[1] // 8][ipt_cha_opt], | |
inter_channels=ic, | |
) | |
self.ipt_blk2 = DBlock( | |
2**4 * 3 if self.split else 3, | |
[N_dec_ipt, channels[2] // 8][ipt_cha_opt], | |
inter_channels=ic, | |
) | |
self.ipt_blk1 = DBlock( | |
2**0 * 3 if self.split else 3, | |
[N_dec_ipt, channels[3] // 8][ipt_cha_opt], | |
inter_channels=ic, | |
) | |
else: | |
self.split = None | |
self.decoder_block4 = DecoderBlock( | |
channels[0] | |
+ ( | |
[N_dec_ipt, channels[0] // 8][ipt_cha_opt] if self.config.dec_ipt else 0 | |
), | |
channels[1], | |
) | |
self.decoder_block3 = DecoderBlock( | |
channels[1] | |
+ ( | |
[N_dec_ipt, channels[0] // 8][ipt_cha_opt] if self.config.dec_ipt else 0 | |
), | |
channels[2], | |
) | |
self.decoder_block2 = DecoderBlock( | |
channels[2] | |
+ ( | |
[N_dec_ipt, channels[1] // 8][ipt_cha_opt] if self.config.dec_ipt else 0 | |
), | |
channels[3], | |
) | |
self.decoder_block1 = DecoderBlock( | |
channels[3] | |
+ ( | |
[N_dec_ipt, channels[2] // 8][ipt_cha_opt] if self.config.dec_ipt else 0 | |
), | |
channels[3] // 2, | |
) | |
self.conv_out1 = nn.Sequential( | |
nn.Conv2d( | |
channels[3] // 2 | |
+ ( | |
[N_dec_ipt, channels[3] // 8][ipt_cha_opt] | |
if self.config.dec_ipt | |
else 0 | |
), | |
1, | |
1, | |
1, | |
0, | |
) | |
) | |
self.lateral_block4 = LateralBlock(channels[1], channels[1]) | |
self.lateral_block3 = LateralBlock(channels[2], channels[2]) | |
self.lateral_block2 = LateralBlock(channels[3], channels[3]) | |
if self.config.ms_supervision: | |
self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0) | |
self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0) | |
self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0) | |
if self.config.out_ref: | |
_N = 16 | |
self.gdt_convs_4 = nn.Sequential( | |
nn.Conv2d(channels[1], _N, 3, 1, 1), | |
nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), | |
nn.ReLU(inplace=True), | |
) | |
self.gdt_convs_3 = nn.Sequential( | |
nn.Conv2d(channels[2], _N, 3, 1, 1), | |
nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), | |
nn.ReLU(inplace=True), | |
) | |
self.gdt_convs_2 = nn.Sequential( | |
nn.Conv2d(channels[3], _N, 3, 1, 1), | |
nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), | |
nn.ReLU(inplace=True), | |
) | |
self.gdt_convs_pred_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) | |
self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) | |
self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) | |
self.gdt_convs_attn_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) | |
self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) | |
self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) | |
def forward(self, features): | |
if self.training and self.config.out_ref: | |
outs_gdt_pred = [] | |
outs_gdt_label = [] | |
x, x1, x2, x3, x4, gdt_gt = features | |
else: | |
x, x1, x2, x3, x4 = features | |
outs = [] | |
if self.config.dec_ipt: | |
patches_batch = ( | |
image2patches( | |
x, | |
patch_ref=x4, | |
transformation="b c (hg h) (wg w) -> b (c hg wg) h w", | |
) | |
if self.split | |
else x | |
) | |
x4 = torch.cat( | |
( | |
x4, | |
self.ipt_blk5( | |
F.interpolate( | |
patches_batch, | |
size=x4.shape[2:], | |
mode="bilinear", | |
align_corners=True, | |
) | |
), | |
), | |
1, | |
) | |
p4 = self.decoder_block4(x4) | |
m4 = ( | |
self.conv_ms_spvn_4(p4) | |
if self.config.ms_supervision and self.training | |
else None | |
) | |
if self.config.out_ref: | |
p4_gdt = self.gdt_convs_4(p4) | |
if self.training: | |
# >> GT: | |
m4_dia = m4 | |
gdt_label_main_4 = gdt_gt * F.interpolate( | |
m4_dia, size=gdt_gt.shape[2:], mode="bilinear", align_corners=True | |
) | |
outs_gdt_label.append(gdt_label_main_4) | |
# >> Pred: | |
gdt_pred_4 = self.gdt_convs_pred_4(p4_gdt) | |
outs_gdt_pred.append(gdt_pred_4) | |
gdt_attn_4 = self.gdt_convs_attn_4(p4_gdt).sigmoid() | |
# >> Finally: | |
p4 = p4 * gdt_attn_4 | |
_p4 = F.interpolate(p4, size=x3.shape[2:], mode="bilinear", align_corners=True) | |
_p3 = _p4 + self.lateral_block4(x3) | |
if self.config.dec_ipt: | |
patches_batch = ( | |
image2patches( | |
x, | |
patch_ref=_p3, | |
transformation="b c (hg h) (wg w) -> b (c hg wg) h w", | |
) | |
if self.split | |
else x | |
) | |
_p3 = torch.cat( | |
( | |
_p3, | |
self.ipt_blk4( | |
F.interpolate( | |
patches_batch, | |
size=x3.shape[2:], | |
mode="bilinear", | |
align_corners=True, | |
) | |
), | |
), | |
1, | |
) | |
p3 = self.decoder_block3(_p3) | |
m3 = ( | |
self.conv_ms_spvn_3(p3) | |
if self.config.ms_supervision and self.training | |
else None | |
) | |
if self.config.out_ref: | |
p3_gdt = self.gdt_convs_3(p3) | |
if self.training: | |
# >> GT: | |
# m3 --dilation--> m3_dia | |
# G_3^gt * m3_dia --> G_3^m, which is the label of gradient | |
m3_dia = m3 | |
gdt_label_main_3 = gdt_gt * F.interpolate( | |
m3_dia, size=gdt_gt.shape[2:], mode="bilinear", align_corners=True | |
) | |
outs_gdt_label.append(gdt_label_main_3) | |
# >> Pred: | |
# p3 --conv--BN--> F_3^G, where F_3^G predicts the \hat{G_3} with xx | |
# F_3^G --sigmoid--> A_3^G | |
gdt_pred_3 = self.gdt_convs_pred_3(p3_gdt) | |
outs_gdt_pred.append(gdt_pred_3) | |
gdt_attn_3 = self.gdt_convs_attn_3(p3_gdt).sigmoid() | |
# >> Finally: | |
# p3 = p3 * A_3^G | |
p3 = p3 * gdt_attn_3 | |
_p3 = F.interpolate(p3, size=x2.shape[2:], mode="bilinear", align_corners=True) | |
_p2 = _p3 + self.lateral_block3(x2) | |
if self.config.dec_ipt: | |
patches_batch = ( | |
image2patches( | |
x, | |
patch_ref=_p2, | |
transformation="b c (hg h) (wg w) -> b (c hg wg) h w", | |
) | |
if self.split | |
else x | |
) | |
_p2 = torch.cat( | |
( | |
_p2, | |
self.ipt_blk3( | |
F.interpolate( | |
patches_batch, | |
size=x2.shape[2:], | |
mode="bilinear", | |
align_corners=True, | |
) | |
), | |
), | |
1, | |
) | |
p2 = self.decoder_block2(_p2) | |
m2 = ( | |
self.conv_ms_spvn_2(p2) | |
if self.config.ms_supervision and self.training | |
else None | |
) | |
if self.config.out_ref: | |
p2_gdt = self.gdt_convs_2(p2) | |
if self.training: | |
# >> GT: | |
m2_dia = m2 | |
gdt_label_main_2 = gdt_gt * F.interpolate( | |
m2_dia, size=gdt_gt.shape[2:], mode="bilinear", align_corners=True | |
) | |
outs_gdt_label.append(gdt_label_main_2) | |
# >> Pred: | |
gdt_pred_2 = self.gdt_convs_pred_2(p2_gdt) | |
outs_gdt_pred.append(gdt_pred_2) | |
gdt_attn_2 = self.gdt_convs_attn_2(p2_gdt).sigmoid() | |
# >> Finally: | |
p2 = p2 * gdt_attn_2 | |
_p2 = F.interpolate(p2, size=x1.shape[2:], mode="bilinear", align_corners=True) | |
_p1 = _p2 + self.lateral_block2(x1) | |
if self.config.dec_ipt: | |
patches_batch = ( | |
image2patches( | |
x, | |
patch_ref=_p1, | |
transformation="b c (hg h) (wg w) -> b (c hg wg) h w", | |
) | |
if self.split | |
else x | |
) | |
_p1 = torch.cat( | |
( | |
_p1, | |
self.ipt_blk2( | |
F.interpolate( | |
patches_batch, | |
size=x1.shape[2:], | |
mode="bilinear", | |
align_corners=True, | |
) | |
), | |
), | |
1, | |
) | |
_p1 = self.decoder_block1(_p1) | |
_p1 = F.interpolate(_p1, size=x.shape[2:], mode="bilinear", align_corners=True) | |
if self.config.dec_ipt: | |
patches_batch = ( | |
image2patches( | |
x, | |
patch_ref=_p1, | |
transformation="b c (hg h) (wg w) -> b (c hg wg) h w", | |
) | |
if self.split | |
else x | |
) | |
_p1 = torch.cat( | |
( | |
_p1, | |
self.ipt_blk1( | |
F.interpolate( | |
patches_batch, | |
size=x.shape[2:], | |
mode="bilinear", | |
align_corners=True, | |
) | |
), | |
), | |
1, | |
) | |
p1_out = self.conv_out1(_p1) | |
if self.config.ms_supervision and self.training: | |
outs.append(m4) | |
outs.append(m3) | |
outs.append(m2) | |
outs.append(p1_out) | |
return ( | |
outs | |
if not (self.config.out_ref and self.training) | |
else ([outs_gdt_pred, outs_gdt_label], outs) | |
) | |
class SimpleConvs(nn.Module): | |
def __init__(self, in_channels: int, out_channels: int, inter_channels=64) -> None: | |
super().__init__() | |
self.conv1 = nn.Conv2d(in_channels, inter_channels, 3, 1, 1) | |
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1) | |
def forward(self, x): | |
return self.conv_out(self.conv1(x)) | |
########### | |
class BiRefNetC2F( | |
nn.Module, | |
PyTorchModelHubMixin, | |
library_name="birefnet_c2f", | |
repo_url="https://github.com/ZhengPeng7/BiRefNet_C2F", | |
tags=[ | |
"Image Segmentation", | |
"Background Removal", | |
"Mask Generation", | |
"Dichotomous Image Segmentation", | |
"Camouflaged Object Detection", | |
"Salient Object Detection", | |
], | |
): | |
def __init__(self, bb_pretrained=True): | |
super(BiRefNetC2F, self).__init__() | |
self.config = Config() | |
self.epoch = 1 | |
self.grid = 4 | |
self.model_coarse = BiRefNet(bb_pretrained=True) | |
self.model_fine = BiRefNet(bb_pretrained=True) | |
self.input_mixer = nn.Conv2d(4, 3, 1, 1, 0) | |
self.output_mixer_merge_post = nn.Sequential( | |
nn.Conv2d(1, 16, 3, 1, 1), nn.Conv2d(16, 1, 3, 1, 1) | |
) | |
def forward(self, x): | |
x_ori = x.clone() | |
########## Coarse ########## | |
x = F.interpolate( | |
x, | |
size=[s // self.grid for s in self.config.size[::-1]], | |
mode="bilinear", | |
align_corners=True, | |
) | |
if self.training: | |
scaled_preds, class_preds_lst = self.model_coarse(x) | |
else: | |
scaled_preds = self.model_coarse(x) | |
########## Fine ########## | |
x_HR_patches = image2patches( | |
x_ori, patch_ref=x, transformation="b c (hg h) (wg w) -> (b hg wg) c h w" | |
) | |
pred = F.interpolate( | |
( | |
scaled_preds[-1] | |
if not (self.config.out_ref and self.training) | |
else scaled_preds[1][-1] | |
), | |
size=x_ori.shape[2:], | |
mode="bilinear", | |
align_corners=True, | |
) | |
pred_patches = image2patches( | |
pred, patch_ref=x, transformation="b c (hg h) (wg w) -> (b hg wg) c h w" | |
) | |
t = torch.cat([x_HR_patches, pred_patches], dim=1) | |
x_HR = self.input_mixer(t) | |
pred_patches = image2patches( | |
pred, patch_ref=x_HR, transformation="b c (hg h) (wg w) -> b (c hg wg) h w" | |
) | |
if self.training: | |
scaled_preds_HR, class_preds_lst_HR = self.model_fine(x_HR) | |
else: | |
scaled_preds_HR = self.model_fine(x_HR) | |
if self.training: | |
if self.config.out_ref: | |
[outs_gdt_pred, outs_gdt_label], outs = scaled_preds | |
[outs_gdt_pred_HR, outs_gdt_label_HR], outs_HR = scaled_preds_HR | |
for idx_out, out_HR in enumerate(outs_HR): | |
outs_HR[idx_out] = self.output_mixer_merge_post( | |
patches2image( | |
out_HR, | |
grid_h=self.grid, | |
grid_w=self.grid, | |
transformation="(b hg wg) c h w -> b c (hg h) (wg w)", | |
) | |
) | |
return [ | |
( | |
[ | |
outs_gdt_pred + outs_gdt_pred_HR, | |
outs_gdt_label + outs_gdt_label_HR, | |
], | |
outs + outs_HR, | |
), | |
class_preds_lst, | |
] # handle gt here | |
else: | |
return [ | |
scaled_preds | |
+ [ | |
self.output_mixer_merge_post( | |
patches2image( | |
scaled_pred_HR, | |
grid_h=self.grid, | |
grid_w=self.grid, | |
transformation="(b hg wg) c h w -> b c (hg h) (wg w)", | |
) | |
) | |
for scaled_pred_HR in scaled_preds_HR | |
], | |
class_preds_lst, | |
] | |
else: | |
return scaled_preds + [ | |
self.output_mixer_merge_post( | |
patches2image( | |
scaled_pred_HR, | |
grid_h=self.grid, | |
grid_w=self.grid, | |
transformation="(b hg wg) c h w -> b c (hg h) (wg w)", | |
) | |
) | |
for scaled_pred_HR in scaled_preds_HR | |
] | |