Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import datetime | |
import argparse | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
from torch.autograd import Variable | |
from config import Config | |
from loss import PixLoss, ClsLoss | |
from dataset import MyData | |
from models.birefnet import BiRefNet, BiRefNetC2F | |
from utils import Logger, AverageMeter, set_seed, check_state_dict | |
from torch.utils.data.distributed import DistributedSampler | |
from torch.nn.parallel import DistributedDataParallel as DDP | |
from torch.distributed import init_process_group, destroy_process_group | |
parser = argparse.ArgumentParser(description='') | |
parser.add_argument('--resume', default=None, type=str, help='path to latest checkpoint') | |
parser.add_argument('--epochs', default=120, type=int) | |
parser.add_argument('--ckpt_dir', default='ckpt/tmp', help='Temporary folder') | |
parser.add_argument('--testsets', default='DIS-VD+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4', type=str) | |
parser.add_argument('--dist', default=False, type=lambda x: x == 'True') | |
parser.add_argument('--use_accelerate', action='store_true', help='`accelerate launch --multi_gpu train.py --use_accelerate`. Use accelerate for training, good for FP16/BF16/...') | |
args = parser.parse_args() | |
if args.use_accelerate: | |
from accelerate import Accelerator | |
accelerator = Accelerator( | |
mixed_precision=['no', 'fp16', 'bf16', 'fp8'][1], | |
gradient_accumulation_steps=1, | |
) | |
args.dist = False | |
config = Config() | |
if config.rand_seed: | |
set_seed(config.rand_seed) | |
# DDP | |
to_be_distributed = args.dist | |
if to_be_distributed: | |
init_process_group(backend="nccl", timeout=datetime.timedelta(seconds=3600*10)) | |
device = int(os.environ["LOCAL_RANK"]) | |
else: | |
device = config.device | |
epoch_st = 1 | |
# make dir for ckpt | |
os.makedirs(args.ckpt_dir, exist_ok=True) | |
# Init log file | |
logger = Logger(os.path.join(args.ckpt_dir, "log.txt")) | |
logger_loss_idx = 1 | |
# log model and optimizer params | |
# logger.info("Model details:"); logger.info(model) | |
if args.use_accelerate and accelerator.mixed_precision != 'no': | |
config.compile = False | |
logger.info("datasets: load_all={}, compile={}.".format(config.load_all, config.compile)) | |
logger.info("Other hyperparameters:"); logger.info(args) | |
print('batch size:', config.batch_size) | |
if os.path.exists(os.path.join(config.data_root_dir, config.task, args.testsets.strip('+').split('+')[0])): | |
args.testsets = args.testsets.strip('+').split('+') | |
else: | |
args.testsets = [] | |
def prepare_dataloader(dataset: torch.utils.data.Dataset, batch_size: int, to_be_distributed=False, is_train=True): | |
# Prepare dataloaders | |
if to_be_distributed: | |
return torch.utils.data.DataLoader( | |
dataset=dataset, batch_size=batch_size, num_workers=min(config.num_workers, batch_size), pin_memory=True, | |
shuffle=False, sampler=DistributedSampler(dataset), drop_last=True | |
) | |
else: | |
return torch.utils.data.DataLoader( | |
dataset=dataset, batch_size=batch_size, num_workers=min(config.num_workers, batch_size, 0), pin_memory=True, | |
shuffle=is_train, drop_last=True | |
) | |
def init_data_loaders(to_be_distributed): | |
# Prepare datasets | |
train_loader = prepare_dataloader( | |
MyData(datasets=config.training_set, image_size=config.size, is_train=True), | |
config.batch_size, to_be_distributed=to_be_distributed, is_train=True | |
) | |
print(len(train_loader), "batches of train dataloader {} have been created.".format(config.training_set)) | |
test_loaders = {} | |
for testset in args.testsets: | |
_data_loader_test = prepare_dataloader( | |
MyData(datasets=testset, image_size=config.size, is_train=False), | |
config.batch_size_valid, is_train=False | |
) | |
print(len(_data_loader_test), "batches of valid dataloader {} have been created.".format(testset)) | |
test_loaders[testset] = _data_loader_test | |
return train_loader, test_loaders | |
def init_models_optimizers(epochs, to_be_distributed): | |
# Init models | |
if config.model == 'BiRefNet': | |
model = BiRefNet(bb_pretrained=True and not os.path.isfile(str(args.resume))) | |
elif config.model == 'BiRefNetC2F': | |
model = BiRefNetC2F(bb_pretrained=True and not os.path.isfile(str(args.resume))) | |
if args.resume: | |
if os.path.isfile(args.resume): | |
logger.info("=> loading checkpoint '{}'".format(args.resume)) | |
state_dict = torch.load(args.resume, map_location='cpu', weights_only=True) | |
state_dict = check_state_dict(state_dict) | |
model.load_state_dict(state_dict) | |
global epoch_st | |
epoch_st = int(args.resume.rstrip('.pth').split('epoch_')[-1]) + 1 | |
else: | |
logger.info("=> no checkpoint found at '{}'".format(args.resume)) | |
if not args.use_accelerate: | |
if to_be_distributed: | |
model = model.to(device) | |
model = DDP(model, device_ids=[device]) | |
else: | |
model = model.to(device) | |
if config.compile: | |
model = torch.compile(model, mode=['default', 'reduce-overhead', 'max-autotune'][0]) | |
if config.precisionHigh: | |
torch.set_float32_matmul_precision('high') | |
# Setting optimizer | |
if config.optimizer == 'AdamW': | |
optimizer = optim.AdamW(params=model.parameters(), lr=config.lr, weight_decay=1e-2) | |
elif config.optimizer == 'Adam': | |
optimizer = optim.Adam(params=model.parameters(), lr=config.lr, weight_decay=0) | |
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( | |
optimizer, | |
milestones=[lde if lde > 0 else epochs + lde + 1 for lde in config.lr_decay_epochs], | |
gamma=config.lr_decay_rate | |
) | |
logger.info("Optimizer details:"); logger.info(optimizer) | |
logger.info("Scheduler details:"); logger.info(lr_scheduler) | |
return model, optimizer, lr_scheduler | |
class Trainer: | |
def __init__( | |
self, data_loaders, model_opt_lrsch, | |
): | |
self.model, self.optimizer, self.lr_scheduler = model_opt_lrsch | |
self.train_loader, self.test_loaders = data_loaders | |
if args.use_accelerate: | |
self.train_loader, self.model, self.optimizer = accelerator.prepare(self.train_loader, self.model, self.optimizer) | |
for testset in self.test_loaders.keys(): | |
self.test_loaders[testset] = accelerator.prepare(self.test_loaders[testset]) | |
if config.out_ref: | |
self.criterion_gdt = nn.BCELoss() | |
# Setting Losses | |
self.pix_loss = PixLoss() | |
self.cls_loss = ClsLoss() | |
# Others | |
self.loss_log = AverageMeter() | |
def _train_batch(self, batch): | |
if args.use_accelerate: | |
inputs = batch[0]#.to(device) | |
gts = batch[1]#.to(device) | |
class_labels = batch[2]#.to(device) | |
else: | |
inputs = batch[0].to(device) | |
gts = batch[1].to(device) | |
class_labels = batch[2].to(device) | |
scaled_preds, class_preds_lst = self.model(inputs) | |
if config.out_ref: | |
(outs_gdt_pred, outs_gdt_label), scaled_preds = scaled_preds | |
for _idx, (_gdt_pred, _gdt_label) in enumerate(zip(outs_gdt_pred, outs_gdt_label)): | |
_gdt_pred = nn.functional.interpolate(_gdt_pred, size=_gdt_label.shape[2:], mode='bilinear', align_corners=True).sigmoid() | |
_gdt_label = _gdt_label.sigmoid() | |
loss_gdt = self.criterion_gdt(_gdt_pred, _gdt_label) if _idx == 0 else self.criterion_gdt(_gdt_pred, _gdt_label) + loss_gdt | |
# self.loss_dict['loss_gdt'] = loss_gdt.item() | |
if None in class_preds_lst: | |
loss_cls = 0. | |
else: | |
loss_cls = self.cls_loss(class_preds_lst, class_labels) * 1.0 | |
self.loss_dict['loss_cls'] = loss_cls.item() | |
# Loss | |
loss_pix = self.pix_loss(scaled_preds, torch.clamp(gts, 0, 1)) * 1.0 | |
self.loss_dict['loss_pix'] = loss_pix.item() | |
# since there may be several losses for sal, the lambdas for them (lambdas_pix) are inside the loss.py | |
loss = loss_pix + loss_cls | |
if config.out_ref: | |
loss = loss + loss_gdt * 1.0 | |
self.loss_log.update(loss.item(), inputs.size(0)) | |
self.optimizer.zero_grad() | |
if args.use_accelerate: | |
accelerator.backward(loss) | |
else: | |
loss.backward() | |
self.optimizer.step() | |
def train_epoch(self, epoch): | |
global logger_loss_idx | |
self.model.train() | |
self.loss_dict = {} | |
if epoch > args.epochs + config.finetune_last_epochs: | |
if config.task == 'Matting': | |
self.pix_loss.lambdas_pix_last['mae'] *= 1 | |
self.pix_loss.lambdas_pix_last['mse'] *= 0.9 | |
self.pix_loss.lambdas_pix_last['ssim'] *= 0.9 | |
else: | |
self.pix_loss.lambdas_pix_last['bce'] *= 0 | |
self.pix_loss.lambdas_pix_last['ssim'] *= 1 | |
self.pix_loss.lambdas_pix_last['iou'] *= 0.5 | |
self.pix_loss.lambdas_pix_last['mae'] *= 0.9 | |
for batch_idx, batch in enumerate(self.train_loader): | |
self._train_batch(batch) | |
# Logger | |
if batch_idx % 20 == 0: | |
info_progress = 'Epoch[{0}/{1}] Iter[{2}/{3}].'.format(epoch, args.epochs, batch_idx, len(self.train_loader)) | |
info_loss = 'Training Losses' | |
for loss_name, loss_value in self.loss_dict.items(): | |
info_loss += ', {}: {:.3f}'.format(loss_name, loss_value) | |
logger.info(' '.join((info_progress, info_loss))) | |
info_loss = '@==Final== Epoch[{0}/{1}] Training Loss: {loss.avg:.3f} '.format(epoch, args.epochs, loss=self.loss_log) | |
logger.info(info_loss) | |
self.lr_scheduler.step() | |
return self.loss_log.avg | |
def main(): | |
trainer = Trainer( | |
data_loaders=init_data_loaders(to_be_distributed), | |
model_opt_lrsch=init_models_optimizers(args.epochs, to_be_distributed) | |
) | |
for epoch in range(epoch_st, args.epochs+1): | |
train_loss = trainer.train_epoch(epoch) | |
# Save checkpoint | |
# DDP | |
if epoch >= args.epochs - config.save_last and epoch % config.save_step == 0: | |
torch.save( | |
trainer.model.module.state_dict() if to_be_distributed or args.use_accelerate else trainer.model.state_dict(), | |
os.path.join(args.ckpt_dir, 'epoch_{}.pth'.format(epoch)) | |
) | |
if to_be_distributed: | |
destroy_process_group() | |
if __name__ == '__main__': | |
main() | |