Spaces:
Running
on
Zero
Running
on
Zero
# Multi-HMR | |
# Copyright (c) 2024-present NAVER Corp. | |
# CC BY-NC-SA 4.0 license | |
import torch | |
from torch import nn | |
import numpy as np | |
class FourierPositionEncoding(nn.Module): | |
def __init__(self, n, num_bands, max_resolution): | |
""" | |
Module that generate Fourier encoding - no learning involved | |
""" | |
super().__init__() | |
self.num_bands = num_bands | |
self.max_resolution = [max_resolution] * n | |
def channels(self): | |
""" | |
Return the output dimension | |
""" | |
num_dims = len(self.max_resolution) | |
encoding_size = self.num_bands * num_dims | |
encoding_size *= 2 # sin-cos | |
encoding_size += num_dims # concat | |
return encoding_size | |
def forward(self, pos): | |
""" | |
Forward pass that take rays as input and generate Fourier positional encodings | |
""" | |
fourier_pos_enc = _generate_fourier_features(pos, num_bands=self.num_bands, max_resolution=self.max_resolution) | |
return fourier_pos_enc | |
def _generate_fourier_features(pos, num_bands, max_resolution): | |
"""Generate fourier features from a given set of positions and frequencies""" | |
b, n = pos.shape[:2] | |
device = pos.device | |
# Linear frequency sampling | |
min_freq = 1.0 | |
freq_bands = torch.stack([torch.linspace(start=min_freq, end=res / 2, steps=num_bands, device=device) for res in max_resolution], dim=0) | |
# Stacking | |
per_pos_features = torch.stack([pos[i, :, :][:, :, None] * freq_bands[None, :, :] for i in range(b)], 0) | |
per_pos_features = per_pos_features.reshape(b, n, -1) | |
# Sin-Cos | |
per_pos_features = torch.cat([torch.sin(np.pi * per_pos_features), torch.cos(np.pi * per_pos_features)], dim=-1) | |
# Concat with initial pos | |
per_pos_features = torch.cat([pos, per_pos_features], dim=-1) | |
return per_pos_features |