Spaces:
Running
on
Zero
Running
on
Zero
# -*- coding: utf-8 -*- | |
# @Organization : Alibaba XR-Lab | |
# @Author : Lingteng Qiu | |
# @Email : [email protected] | |
# @Time : 2025-03-03 10:29:00 | |
# @Function : easy to use FaceSimilarity metric | |
import os | |
import pdb | |
import shutil | |
import sys | |
sys.path.append("./") | |
from collections import defaultdict | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from PIL import Image | |
from prettytable import PrettyTable | |
from torch.utils.data import Dataset | |
from torchmetrics.image import StructuralSimilarityIndexMeasure | |
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity | |
from torchvision import transforms | |
from tqdm import tqdm | |
from tqlt import utils as tu | |
from openlrm.models.arcface_utils import ResNetArcFace | |
from openlrm.utils.face_detector import FaceDetector | |
device = "cuda" | |
model_path = "./pretrained_models/gagatracker/vgghead/vgg_heads_l.trcd" | |
face_detector = FaceDetector(model_path=model_path, device=device) | |
id_face_net = ResNetArcFace() | |
id_face_net.cuda() | |
id_face_net.eval() | |
def get_image_paths_current_dir(folder_path): | |
image_extensions = { | |
".jpg", | |
".jpeg", | |
".png", | |
".gif", | |
".bmp", | |
".tiff", | |
".webp", | |
".jfif", | |
} | |
return sorted( | |
[ | |
os.path.join(folder_path, f) | |
for f in os.listdir(folder_path) | |
if os.path.splitext(f)[1].lower() in image_extensions | |
] | |
) | |
def write_json(path, x): | |
"""write a json file. | |
Args: | |
path (str): path to write json file. | |
x (dict): dict to write. | |
""" | |
import json | |
with open(path, "w") as f: | |
json.dump(x, f, indent=2) | |
def crop_face_image(image_path): | |
rgb = np.array(Image.open(image_path)) | |
rgb = torch.from_numpy(rgb).permute(2, 0, 1) | |
bbox = face_detector(rgb) | |
head_rgb = rgb[:, int(bbox[1]) : int(bbox[3]), int(bbox[0]) : int(bbox[2])] | |
head_rgb = head_rgb.permute(1, 2, 0) | |
head_rgb = head_rgb.cpu().numpy() | |
return head_rgb | |
def gray_resize_for_identity(out, size=128): | |
out_gray = ( | |
0.2989 * out[:, 0, :, :] + 0.5870 * out[:, 1, :, :] + 0.1140 * out[:, 2, :, :] | |
) | |
out_gray = out_gray.unsqueeze(1) | |
out_gray = F.interpolate( | |
out_gray, (size, size), mode="bilinear", align_corners=False | |
) | |
return out_gray | |
def eval(input_folder, target_folder, device="cuda"): | |
gt_imgs = get_image_paths_current_dir(target_folder) | |
result_imgs = get_image_paths_current_dir(input_folder) | |
gt_imgs = gt_imgs[::4] | |
result_imgs = result_imgs[::4] | |
if "visualization" in result_imgs[-1]: | |
result_imgs = result_imgs[:-1] | |
if len(gt_imgs) != len(result_imgs): | |
return -1 | |
to_tensor = transforms.ToTensor() | |
face_id_loss_list = [] | |
for input_img, gt_img in zip(result_imgs, gt_imgs): | |
try: | |
input_img = crop_face_image(input_img) | |
input_head_tensor = gray_resize_for_identity( | |
to_tensor(input_img).unsqueeze(0).to(device) | |
) | |
input_head_feature = id_face_net(input_head_tensor).detach() | |
head_img = crop_face_image(gt_img) | |
head_img = to_tensor(head_img).unsqueeze(0).to(device) | |
src_head_tensor = gray_resize_for_identity(head_img) | |
src_head_feature = id_face_net(src_head_tensor).detach() | |
face_id_loss = F.l1_loss(input_head_feature, src_head_feature) | |
face_id_loss_list.append(face_id_loss.item()) | |
except: | |
continue | |
if len(face_id_loss_list) > 0: | |
return np.mean(face_id_loss_list) # return max similarity view. | |
else: | |
return -1 | |
def get_parse(): | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument("-f1", "--folder1", type=str, required=True) | |
parser.add_argument("-f2", "--folder2", type=str, required=True) | |
parser.add_argument("--pad", action="store_true") | |
parser.add_argument("--debug", action="store_true") | |
args = parser.parse_args() | |
return args | |
if __name__ == "__main__": | |
opt = get_parse() | |
input_folder = opt.folder1 | |
target_folder = opt.folder2 | |
save_folder = os.path.join("./exps/metricsanigs", "psnr_results") | |
os.makedirs(save_folder, exist_ok=True) | |
input_folders = tu.next_folders(input_folder) | |
results_dict = defaultdict(dict) | |
results_dict = defaultdict(dict) | |
face_similarity_list = [] | |
for input_folder in input_folders: | |
item_basename = tu.basename(input_folder) | |
mask_item_folder = None | |
input_item_folder = os.path.join(input_folder, "rgb") | |
target_item_folder = os.path.join(target_folder, item_basename) | |
if os.path.exists(input_item_folder) and os.path.exists(target_item_folder): | |
fs_ = eval(input_item_folder, target_item_folder) | |
if fs_ == -1: | |
continue | |
face_similarity_list.append(fs_) | |
results_dict[item_basename]["face_similarity"] = fs_ | |
if opt.debug: | |
break | |
print(results_dict) | |
results_dict["all_mean"]["face_similarity"] = np.mean(face_similarity_list) | |
write_json(os.path.join(save_folder, "face_similarity.json"), results_dict) | |