Spaces:
Paused
Paused
Upload 3 files
Browse files- backend/__pycache__/llama3.cpython-312.pyc +0 -0
- backend/app.py +44 -0
- backend/llama3.py +36 -0
backend/__pycache__/llama3.cpython-312.pyc
ADDED
Binary file (1.87 kB). View file
|
|
backend/app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify, render_template, send_from_directory
|
2 |
+
from flask_cors import CORS
|
3 |
+
import os
|
4 |
+
from llama3 import LlaMa3 # 导入您的 LlaMa3 类
|
5 |
+
|
6 |
+
app = Flask(__name__)
|
7 |
+
CORS(app)
|
8 |
+
|
9 |
+
# 实例化 LlaMa3 模型
|
10 |
+
llama3_model = LlaMa3()
|
11 |
+
|
12 |
+
@app.route('/')
|
13 |
+
def index():
|
14 |
+
# 返回 HTML 页面
|
15 |
+
return render_template('index.html')
|
16 |
+
|
17 |
+
@app.route('/chat', methods=['POST'])
|
18 |
+
def chat():
|
19 |
+
# 获取前端发送的用户消息
|
20 |
+
user_message = request.json.get('message', '')
|
21 |
+
|
22 |
+
if not user_message.strip():
|
23 |
+
return jsonify({"response": "请输入有效内容!"}), 400
|
24 |
+
|
25 |
+
try:
|
26 |
+
# 构造聊天上下文
|
27 |
+
messages = [{"role": "user", "content": user_message}]
|
28 |
+
|
29 |
+
# 调用 LlaMa3 的 chat 方法生成回复
|
30 |
+
ai_response = llama3_model.chat(messages)
|
31 |
+
|
32 |
+
# 返回 AI 的回复
|
33 |
+
return jsonify({"response": ai_response})
|
34 |
+
except Exception as e:
|
35 |
+
print(f"Error during llama3 call: {e}")
|
36 |
+
return jsonify({"response": "发生错误,请稍后重试!"}), 500
|
37 |
+
|
38 |
+
@app.route('/favicon.ico')
|
39 |
+
def favicon():
|
40 |
+
return send_from_directory(os.path.join(app.root_path, 'static'),
|
41 |
+
'favicon.ico', mimetype='image/vnd.microsoft.icon')
|
42 |
+
|
43 |
+
if __name__ == '__main__':
|
44 |
+
app.run(debug=True, host='127.0.0.1', port=5000)
|
backend/llama3.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from openai import OpenAI
|
2 |
+
class LlaMa3:
|
3 |
+
def __init__(self) -> None:
|
4 |
+
self.client = OpenAI(
|
5 |
+
base_url="https://integrate.api.nvidia.com/v1",
|
6 |
+
api_key="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"
|
7 |
+
)
|
8 |
+
self.name = "Llama3"
|
9 |
+
|
10 |
+
# Initial greeting and request for decision topic
|
11 |
+
self.initial_prompt = """
|
12 |
+
Hello! I can assist you in making a decision. What decision would you like to make today?
|
13 |
+
Please describe the decision and provide any relevant details to help me understand.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def chat(self, messages):
|
17 |
+
# If this is the first message, we use the initial prompt to greet and ask for the decision topic
|
18 |
+
if len(messages) == 0: # Initial conversation step
|
19 |
+
messages.append({"role": "system", "content": self.initial_prompt})
|
20 |
+
|
21 |
+
# Call the API to get the model's response
|
22 |
+
completion = self.client.chat.completions.create(
|
23 |
+
model="nvidia/llama-3.1-nemotron-70b-instruct",
|
24 |
+
messages=messages,
|
25 |
+
temperature=0.5,
|
26 |
+
top_p=1,
|
27 |
+
max_tokens=1024,
|
28 |
+
stream=True
|
29 |
+
)
|
30 |
+
|
31 |
+
response = ""
|
32 |
+
for chunk in completion:
|
33 |
+
if chunk.choices[0].delta.content is not None:
|
34 |
+
response += chunk.choices[0].delta.content
|
35 |
+
|
36 |
+
return response
|