Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,57 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
|
|
|
|
3 |
import torch
|
4 |
from diffusers import StableDiffusionPipeline
|
5 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
st.
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import cv2 as cv
|
3 |
+
import time
|
4 |
+
import streamlit as st
|
5 |
import torch
|
6 |
from diffusers import StableDiffusionPipeline
|
7 |
+
import os
|
8 |
+
import openai
|
9 |
+
|
10 |
+
# "stabilityai/stable-diffusion-2-1-base"
|
11 |
+
# "CompVis/stable-diffusion-v1-4"
|
12 |
+
def create_model(loc = "stabilityai/stable-diffusion-2-1-base", mch = 'cuda'):
|
13 |
+
pipe = StableDiffusionPipeline.from_pretrained(loc, torch_dtype=torch.float16)
|
14 |
+
pipe = pipe.to(mch)
|
15 |
+
return pipe
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
openai.api_key = "please-paste-your-API-key-here"
|
20 |
+
|
21 |
+
def chatWithGPT(prompt):
|
22 |
+
completion = openai.ChatCompletion.create(
|
23 |
+
model="gpt-3.5-turbo",
|
24 |
+
messages=[
|
25 |
+
{"role": "expert in creating prompts for stable diffusion", "content": prompt}
|
26 |
+
]
|
27 |
+
)
|
28 |
+
return print(completion.choices[0].message.content)
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
t2i = st.checkbox("Text2Image")
|
33 |
+
|
34 |
+
if t2i:
|
35 |
+
st.title("Text2Image")
|
36 |
+
t2m_mod = create_model()
|
37 |
+
|
38 |
+
prom = st.text_input("# Prompt",'')
|
39 |
|
40 |
+
c1,c2,c3 = st.columns([1,1,3])
|
41 |
+
c4,c5 = st.columns(2)
|
42 |
+
with c1:
|
43 |
+
bu_1 = st.text_input("Seed",'999')
|
44 |
+
with c2:
|
45 |
+
bu_2 = st.text_input("Steps",'12')
|
46 |
+
with c3:
|
47 |
+
bu_3 = st.text_input("Number of Images",'1')
|
48 |
+
with c4:
|
49 |
+
sl_1 = st.slider("Width",256,1024,128)
|
50 |
+
with c5:
|
51 |
+
sl_2 = st.slider("hight",256,1024,128)
|
52 |
|
53 |
+
create = st.button("Imagine")
|
54 |
+
if create:
|
55 |
+
generator = torch.Generator("cuda").manual_seed(int(bu_1))
|
56 |
+
img = t2m_mod(prom, width=int(sl_1), height=int(sl_2), num_inference_steps=int(bu_2), generator=generator).images[0]
|
57 |
+
st.image(img)
|