3laa2 commited on
Commit
4af4d04
·
1 Parent(s): dfa0ea3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -12
app.py CHANGED
@@ -4,8 +4,7 @@ import time
4
  import torch
5
  from diffusers import StableDiffusionPipeline
6
 
7
- # "stabilityai/stable-diffusion-2-1-base"
8
- # "CompVis/stable-diffusion-v1-4"
9
  def create_model(loc = "stabilityai/stable-diffusion-2-1-base", mch = 'cpu'):
10
  pipe = StableDiffusionPipeline.from_pretrained(loc)
11
  pipe = pipe.to(mch)
@@ -19,16 +18,18 @@ Txt2Img
19
 
20
  the_type = st.selectbox("Model",("stabilityai/stable-diffusion-2-1-base",
21
  "CompVis/stable-diffusion-v1-4"))
 
22
  create = st.button("Create The Model")
23
 
24
  if create:
25
  st.session_state.t2m_mod = create_model(loc=the_type)
26
-
27
 
28
  prom = st.text_input("# Prompt",'')
29
 
30
  c1,c2,c3 = st.columns([1,1,3])
31
  c4,c5 = st.columns(2)
 
32
  with c1:
33
  bu_1 = st.text_input("Seed",'999')
34
  with c2:
@@ -41,26 +42,22 @@ with c5:
41
  sl_2 = st.slider("hight",128,1024,512,8)
42
 
43
  create = st.button("Imagine")
 
44
  if create:
45
- # generator = torch.Generator("cpu").manual_seed(int(bu_1))
46
- # model = st.session_state.t2m_mod
47
- # img = model(prom, width=int(sl_1), height=int(sl_2), num_inference_steps=int(bu_2), generator=generator).images[0]
48
- # st.image(img)
49
 
50
  if int(bu_3) == 1 :
51
- generator = torch.Generator("cpu").manual_seed(int(bu_1))
52
- model = st.session_state.t2m_mod
53
  IMG = model(prom, width=int(sl_1), height=int(sl_2),
54
  num_inference_steps=int(bu_2),
55
  generator=generator).images[0]
56
  st.image(IMG)
 
57
  else :
58
- generator = torch.Generator("cpu").manual_seed(int(bu_1))
59
  PROMS = [prom]*int(bu_3)
60
- model = st.session_state.t2m_mod
61
  IMGS = model(PROMS, width=int(sl_1), height=int(sl_2),
62
  num_inference_steps=int(bu_2),
63
  generator=generator).images
64
 
65
- # IMGS = np.hstack(IMGS)
66
  st.image(IMGS)
 
4
  import torch
5
  from diffusers import StableDiffusionPipeline
6
 
7
+
 
8
  def create_model(loc = "stabilityai/stable-diffusion-2-1-base", mch = 'cpu'):
9
  pipe = StableDiffusionPipeline.from_pretrained(loc)
10
  pipe = pipe.to(mch)
 
18
 
19
  the_type = st.selectbox("Model",("stabilityai/stable-diffusion-2-1-base",
20
  "CompVis/stable-diffusion-v1-4"))
21
+
22
  create = st.button("Create The Model")
23
 
24
  if create:
25
  st.session_state.t2m_mod = create_model(loc=the_type)
26
+ st.session_state.generator = torch.Generator("cpu").manual_seed(int(bu_1))
27
 
28
  prom = st.text_input("# Prompt",'')
29
 
30
  c1,c2,c3 = st.columns([1,1,3])
31
  c4,c5 = st.columns(2)
32
+
33
  with c1:
34
  bu_1 = st.text_input("Seed",'999')
35
  with c2:
 
42
  sl_2 = st.slider("hight",128,1024,512,8)
43
 
44
  create = st.button("Imagine")
45
+
46
  if create:
47
+ model = st.session_state.t2m_mod
48
+ generator = st.session_state.generator
 
 
49
 
50
  if int(bu_3) == 1 :
 
 
51
  IMG = model(prom, width=int(sl_1), height=int(sl_2),
52
  num_inference_steps=int(bu_2),
53
  generator=generator).images[0]
54
  st.image(IMG)
55
+
56
  else :
 
57
  PROMS = [prom]*int(bu_3)
58
+
59
  IMGS = model(PROMS, width=int(sl_1), height=int(sl_2),
60
  num_inference_steps=int(bu_2),
61
  generator=generator).images
62
 
 
63
  st.image(IMGS)