Update app.py
Browse files
app.py
CHANGED
@@ -4,8 +4,7 @@ import time
|
|
4 |
import torch
|
5 |
from diffusers import StableDiffusionPipeline
|
6 |
|
7 |
-
|
8 |
-
# "CompVis/stable-diffusion-v1-4"
|
9 |
def create_model(loc = "stabilityai/stable-diffusion-2-1-base", mch = 'cpu'):
|
10 |
pipe = StableDiffusionPipeline.from_pretrained(loc)
|
11 |
pipe = pipe.to(mch)
|
@@ -19,16 +18,18 @@ Txt2Img
|
|
19 |
|
20 |
the_type = st.selectbox("Model",("stabilityai/stable-diffusion-2-1-base",
|
21 |
"CompVis/stable-diffusion-v1-4"))
|
|
|
22 |
create = st.button("Create The Model")
|
23 |
|
24 |
if create:
|
25 |
st.session_state.t2m_mod = create_model(loc=the_type)
|
26 |
-
|
27 |
|
28 |
prom = st.text_input("# Prompt",'')
|
29 |
|
30 |
c1,c2,c3 = st.columns([1,1,3])
|
31 |
c4,c5 = st.columns(2)
|
|
|
32 |
with c1:
|
33 |
bu_1 = st.text_input("Seed",'999')
|
34 |
with c2:
|
@@ -41,26 +42,22 @@ with c5:
|
|
41 |
sl_2 = st.slider("hight",128,1024,512,8)
|
42 |
|
43 |
create = st.button("Imagine")
|
|
|
44 |
if create:
|
45 |
-
|
46 |
-
|
47 |
-
# img = model(prom, width=int(sl_1), height=int(sl_2), num_inference_steps=int(bu_2), generator=generator).images[0]
|
48 |
-
# st.image(img)
|
49 |
|
50 |
if int(bu_3) == 1 :
|
51 |
-
generator = torch.Generator("cpu").manual_seed(int(bu_1))
|
52 |
-
model = st.session_state.t2m_mod
|
53 |
IMG = model(prom, width=int(sl_1), height=int(sl_2),
|
54 |
num_inference_steps=int(bu_2),
|
55 |
generator=generator).images[0]
|
56 |
st.image(IMG)
|
|
|
57 |
else :
|
58 |
-
generator = torch.Generator("cpu").manual_seed(int(bu_1))
|
59 |
PROMS = [prom]*int(bu_3)
|
60 |
-
|
61 |
IMGS = model(PROMS, width=int(sl_1), height=int(sl_2),
|
62 |
num_inference_steps=int(bu_2),
|
63 |
generator=generator).images
|
64 |
|
65 |
-
# IMGS = np.hstack(IMGS)
|
66 |
st.image(IMGS)
|
|
|
4 |
import torch
|
5 |
from diffusers import StableDiffusionPipeline
|
6 |
|
7 |
+
|
|
|
8 |
def create_model(loc = "stabilityai/stable-diffusion-2-1-base", mch = 'cpu'):
|
9 |
pipe = StableDiffusionPipeline.from_pretrained(loc)
|
10 |
pipe = pipe.to(mch)
|
|
|
18 |
|
19 |
the_type = st.selectbox("Model",("stabilityai/stable-diffusion-2-1-base",
|
20 |
"CompVis/stable-diffusion-v1-4"))
|
21 |
+
|
22 |
create = st.button("Create The Model")
|
23 |
|
24 |
if create:
|
25 |
st.session_state.t2m_mod = create_model(loc=the_type)
|
26 |
+
st.session_state.generator = torch.Generator("cpu").manual_seed(int(bu_1))
|
27 |
|
28 |
prom = st.text_input("# Prompt",'')
|
29 |
|
30 |
c1,c2,c3 = st.columns([1,1,3])
|
31 |
c4,c5 = st.columns(2)
|
32 |
+
|
33 |
with c1:
|
34 |
bu_1 = st.text_input("Seed",'999')
|
35 |
with c2:
|
|
|
42 |
sl_2 = st.slider("hight",128,1024,512,8)
|
43 |
|
44 |
create = st.button("Imagine")
|
45 |
+
|
46 |
if create:
|
47 |
+
model = st.session_state.t2m_mod
|
48 |
+
generator = st.session_state.generator
|
|
|
|
|
49 |
|
50 |
if int(bu_3) == 1 :
|
|
|
|
|
51 |
IMG = model(prom, width=int(sl_1), height=int(sl_2),
|
52 |
num_inference_steps=int(bu_2),
|
53 |
generator=generator).images[0]
|
54 |
st.image(IMG)
|
55 |
+
|
56 |
else :
|
|
|
57 |
PROMS = [prom]*int(bu_3)
|
58 |
+
|
59 |
IMGS = model(PROMS, width=int(sl_1), height=int(sl_2),
|
60 |
num_inference_steps=int(bu_2),
|
61 |
generator=generator).images
|
62 |
|
|
|
63 |
st.image(IMGS)
|