Update app.py
Browse filesAdded GPT Prompts generator
app.py
CHANGED
@@ -3,6 +3,7 @@ import cv2 as cv
|
|
3 |
import time
|
4 |
import torch
|
5 |
from diffusers import StableDiffusionPipeline
|
|
|
6 |
|
7 |
|
8 |
def create_model(loc = "stabilityai/stable-diffusion-2-1-base", mch = 'cpu'):
|
@@ -10,6 +11,14 @@ def create_model(loc = "stabilityai/stable-diffusion-2-1-base", mch = 'cpu'):
|
|
10 |
pipe = pipe.to(mch)
|
11 |
return pipe
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
t2i = st.title("""
|
14 |
Txt2Img
|
15 |
###### `CLICK "Create_Update_Model"` :
|
@@ -18,17 +27,62 @@ Txt2Img
|
|
18 |
|
19 |
the_type = st.selectbox("Model",("stabilityai/stable-diffusion-2-1-base",
|
20 |
"CompVis/stable-diffusion-v1-4"))
|
|
|
|
|
|
|
21 |
|
22 |
-
|
|
|
23 |
|
24 |
if create:
|
25 |
st.session_state.t2m_mod = create_model(loc=the_type)
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
c1,c2,c3 = st.columns([1,1,3])
|
30 |
c4,c5 = st.columns(2)
|
31 |
-
|
32 |
with c1:
|
33 |
bu_1 = st.text_input("Seed",'999')
|
34 |
with c2:
|
|
|
3 |
import time
|
4 |
import torch
|
5 |
from diffusers import StableDiffusionPipeline
|
6 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
7 |
|
8 |
|
9 |
def create_model(loc = "stabilityai/stable-diffusion-2-1-base", mch = 'cpu'):
|
|
|
11 |
pipe = pipe.to(mch)
|
12 |
return pipe
|
13 |
|
14 |
+
|
15 |
+
def tok_mod():
|
16 |
+
tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
|
17 |
+
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
18 |
+
model = GPT2LMHeadModel.from_pretrained('FredZhang7/distilgpt2-stable-diffusion-v2')
|
19 |
+
return model,tokenizer
|
20 |
+
|
21 |
+
|
22 |
t2i = st.title("""
|
23 |
Txt2Img
|
24 |
###### `CLICK "Create_Update_Model"` :
|
|
|
27 |
|
28 |
the_type = st.selectbox("Model",("stabilityai/stable-diffusion-2-1-base",
|
29 |
"CompVis/stable-diffusion-v1-4"))
|
30 |
+
st.session_state.gate = False
|
31 |
+
|
32 |
+
ma_1,_,ma_2 = st.columns([1,3,1])
|
33 |
|
34 |
+
with ma_1 :
|
35 |
+
create = st.button("Create The Model")
|
36 |
|
37 |
if create:
|
38 |
st.session_state.t2m_mod = create_model(loc=the_type)
|
39 |
|
40 |
+
with ma_2 :
|
41 |
+
gpt = st.checkbox("GPT PROMS")
|
42 |
+
|
43 |
+
if gpt :
|
44 |
+
gen = st.button("Create GPT Model")
|
45 |
+
if gen:
|
46 |
+
st.session_state.mod,st.session_state.tok = tok_mod()
|
47 |
+
|
48 |
+
m1,m2,m3 = st.columns([1,1,3])
|
49 |
+
m4,m5 = st.columns(2)
|
50 |
+
prompt = st.text_input("GPT PROM",r'' )
|
51 |
+
with m1 :
|
52 |
+
temperature = st.slider("Temp",0.0,1.0,.9,.1)
|
53 |
+
with m2 :
|
54 |
+
top_k = st.slider("K",2,16,8,2)
|
55 |
+
with m3 :
|
56 |
+
max_length = st.slider("Length",10,100,80,1)
|
57 |
+
with m4 :
|
58 |
+
repitition_penalty = st.slider("penality",1.0,5.0,1.2,1.0)
|
59 |
+
with m5 :
|
60 |
+
num_return_sequences=st.slider("Proms Num",1,10,5,1)
|
61 |
+
|
62 |
+
prom_gen = st.button("Generate Proms")
|
63 |
|
64 |
+
if prom_gen :
|
65 |
+
model, tokenizer = st.session_state.mod,st.session_state.tok
|
66 |
+
input_ids = tokenizer(prompt, return_tensors='pt').input_ids
|
67 |
+
output = model.generate(input_ids, do_sample=True, temperature=temperature, top_k=top_k, max_length=max_length,
|
68 |
+
num_return_sequences=num_return_sequences, repetition_penalty=repitition_penalty,
|
69 |
+
penalty_alpha=0.6, no_repeat_ngram_size=1, early_stopping=True)
|
70 |
+
|
71 |
+
st.session_state.PROMPTS = []
|
72 |
+
for i in range(len(output)):
|
73 |
+
st.session_state.PROMPTS.append(tokenizer.decode(output[i]))
|
74 |
+
|
75 |
+
if 'PROMPTS' in st.session_state :
|
76 |
+
prom = st.selectbox("Proms",st.session_state.PROMPTS)
|
77 |
+
|
78 |
+
else :
|
79 |
+
prom = st.text_input("# Prompt",'')
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
c1,c2,c3 = st.columns([1,1,3])
|
85 |
c4,c5 = st.columns(2)
|
|
|
86 |
with c1:
|
87 |
bu_1 = st.text_input("Seed",'999')
|
88 |
with c2:
|