import streamlit as st import cv2 as cv import time import torch from diffusers import StableDiffusionPipeline # "stabilityai/stable-diffusion-2-1-base" # "CompVis/stable-diffusion-v1-4" def create_model(loc = "stabilityai/stable-diffusion-2-1-base", mch = 'cpu'): pipe = StableDiffusionPipeline.from_pretrained(loc) pipe = pipe.to(mch) return pipe t2i = st.title(""" # Text2Image ###### `CHECK "Create_Update_Model"` : - `FIRST RUN OF THE CODE` - `CHANGING MODEL`""") the_type = st.selectbox("Model Name",("stabilityai/stable-diffusion-2-1-base", "CompVis/stable-diffusion-v1-4")) create = st.button("Create The Model") if create: st.session_state.t2m_mod = create_model(loc=the_type) prom = st.text_input("# Prompt",'') c1,c2,c3 = st.columns([1,1,3]) c4,c5 = st.columns(2) with c1: bu_1 = st.text_input("Seed",'999') with c2: bu_2 = st.text_input("Steps",'12') with c3: bu_3 = st.text_input("Number of Images",'1') with c4: sl_1 = st.slider("Width",256,1024,128) with c5: sl_2 = st.slider("hight",256,1024,128) create = st.button("Imagine") if create: generator = torch.Generator("cpu").manual_seed(int(bu_1)) model = st.session_state.t2m_mod img = model(prom, width=int(sl_1), height=int(sl_2), num_inference_steps=int(bu_2), generator=generator).images[0] st.image(img)