Spaces:
Sleeping
Sleeping
import gradio as gr | |
import logging | |
from roboflow import Roboflow | |
from PIL import Image, ImageDraw, ImageFont, ImageFilter | |
import cv2 | |
import numpy as np | |
import os | |
from math import atan2, degrees | |
from diffusers import AutoPipelineForText2Image | |
import torch | |
# Configure logging | |
logging.basicConfig( | |
level=logging.DEBUG, | |
format='%(asctime)s - %(levelname)s - %(message)s', | |
handlers=[ | |
logging.FileHandler("debug.log"), | |
logging.StreamHandler() | |
] | |
) | |
# Roboflow and model configuration | |
ROBOFLOW_API_KEY = "KUP9w62eUcD5PrrRMJsV" # Replace with your API key | |
PROJECT_NAME = "model_verification_project" | |
VERSION_NUMBER = 2 | |
# Initialize the FLUX handwriting model | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipeline = AutoPipelineForText2Image.from_pretrained( | |
'black-forest-labs/FLUX.1-dev', | |
torch_dtype=torch.float16 | |
).to(device) | |
pipeline.load_lora_weights('fofr/flux-handwriting', weight_name='lora.safetensors') | |
# Function to detect paper angle within bounding box | |
def detect_paper_angle(image, bounding_box): | |
x1, y1, x2, y2 = bounding_box | |
roi = np.array(image)[y1:y2, x1:x2] | |
gray = cv2.cvtColor(roi, cv2.COLOR_RGBA2GRAY) | |
edges = cv2.Canny(gray, 50, 150) | |
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=50, maxLineGap=10) | |
if lines is not None: | |
longest_line = max(lines, key=lambda line: np.linalg.norm((line[0][2] - line[0][0], line[0][3] - line[0][1]))) | |
x1, y1, x2, y2 = longest_line[0] | |
dx = x2 - x1 | |
dy = y2 - y1 | |
angle = degrees(atan2(dy, dx)) | |
return angle | |
else: | |
return 0 | |
# Function to process image and overlay text | |
def process_image(image, text): | |
try: | |
# Initialize Roboflow | |
rf = Roboflow(api_key=ROBOFLOW_API_KEY) | |
logging.debug("Initialized Roboflow API.") | |
project = rf.workspace().project(PROJECT_NAME) | |
logging.debug("Accessed project in Roboflow.") | |
model = project.version(VERSION_NUMBER).model | |
logging.debug("Loaded model from Roboflow.") | |
# Save input image temporarily | |
input_image_path = "/tmp/input_image.jpg" | |
image.save(input_image_path) | |
logging.debug(f"Input image saved to {input_image_path}.") | |
# Perform inference | |
logging.debug("Performing inference on the image...") | |
prediction = model.predict(input_image_path, confidence=70, overlap=50).json() | |
logging.debug(f"Inference result: {prediction}") | |
# Open the image for processing | |
pil_image = image.convert("RGBA") | |
logging.debug("Converted image to RGBA mode.") | |
# Iterate over detected objects | |
for obj in prediction['predictions']: | |
white_paper_width = obj['width'] | |
white_paper_height = obj['height'] | |
padding_x = int(white_paper_width * 0.1) | |
padding_y = int(white_paper_height * 0.1) | |
box_width = white_paper_width - 2 * padding_x | |
box_height = white_paper_height - 2 * padding_y | |
logging.debug(f"Padded white paper dimensions: width={box_width}, height={box_height}.") | |
x1_padded = int(obj['x'] - white_paper_width / 2 + padding_x) | |
y1_padded = int(obj['y'] - white_paper_height / 2 + padding_y) | |
x2_padded = int(obj['x'] + white_paper_width / 2 - padding_x) | |
y2_padded = int(obj['y'] + white_paper_height / 2 - padding_y) | |
# Detect paper angle | |
angle = detect_paper_angle(np.array(image), (x1_padded, y1_padded, x2_padded, y2_padded)) | |
logging.debug(f"Detected paper angle: {angle} degrees.") | |
# Generate handwriting image with transparent background | |
prompt = f'HWRIT handwriting saying "{text}", neat style, black ink on transparent background' | |
generated_image = pipeline(prompt).images[0].convert("RGBA") | |
logging.debug("Generated handwriting image.") | |
# Resize generated handwriting to fit the detected area | |
generated_image = generated_image.resize((box_width, box_height), Image.ANTIALIAS) | |
# Create a mask for the generated handwriting | |
mask = generated_image.split()[3] | |
# Rotate the generated handwriting to match the detected paper angle | |
rotated_handwriting = generated_image.rotate(-angle, resample=Image.BICUBIC, center=(box_width // 2, box_height // 2)) | |
mask = mask.rotate(-angle, resample=Image.BICUBIC, center=(box_width // 2, box_height // 2)) | |
# Paste the rotated handwriting onto the original image | |
pil_image.paste(rotated_handwriting, (x1_padded, y1_padded), mask) | |
logging.debug("Pasted generated handwriting onto the original image.") | |
# Save and return output image path | |
output_image_path = "/tmp/output_image.png" | |
pil_image.convert("RGB").save(output_image_path) | |
logging.debug(f"Output image saved to {output_image_path}.") | |
return output_image_path | |
except Exception as e: | |
logging.error(f"Error during image processing: {e}") | |
return None | |
# Gradio interface function | |
def gradio_inference(image, text): | |
logging.debug("Starting Gradio inference.") | |
result_path = process_image(image, text) | |
if result_path: | |
logging.debug("Gradio inference successful.") | |
return result_path, result_path, "Processing complete! Download the image below." | |
logging.error("Gradio inference failed.") | |
return None, None, "An error occurred while processing the image. Please check the logs." | |
# Gradio interface | |
# Gradio interface | |
interface = gr.Interface( | |
fn=gradio_inference, | |
inputs=[ | |
gr.Image(type="pil", label="Upload an Image"), # Upload an image | |
gr.Textbox(label="Enter Text to Overlay"), # Enter text to overlay | |
], | |
outputs=[ | |
gr.Image(label="Processed Image Preview"), # Preview the processed image | |
gr.File(label="Download Processed Image"), # Download the image | |
gr.Textbox(label="Status"), # Status message | |
], | |
title="Handwriting Overlay on White Paper", | |
description=( | |
"Upload an image with white paper detected, and enter the text to overlay. " | |
"This app will generate handwriting using the FLUX handwriting model and overlay it on the detected white paper. " | |
"Preview or download the output image below." | |
), | |
allow_flagging="never", # Disables flagging | |
) | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
logging.debug("Launching Gradio interface.") | |
interface.launch(share=True) | |