3morrrrr's picture
Create app.py
6fbeeae verified
raw
history blame
6.6 kB
import gradio as gr
import logging
from roboflow import Roboflow
from PIL import Image, ImageDraw, ImageFont, ImageFilter
import cv2
import numpy as np
import os
from math import atan2, degrees
from diffusers import AutoPipelineForText2Image
import torch
# Configure logging
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("debug.log"),
logging.StreamHandler()
]
)
# Roboflow and model configuration
ROBOFLOW_API_KEY = "KUP9w62eUcD5PrrRMJsV" # Replace with your API key
PROJECT_NAME = "model_verification_project"
VERSION_NUMBER = 2
# Initialize the FLUX handwriting model
device = "cuda" if torch.cuda.is_available() else "cpu"
pipeline = AutoPipelineForText2Image.from_pretrained(
'black-forest-labs/FLUX.1-dev',
torch_dtype=torch.float16
).to(device)
pipeline.load_lora_weights('fofr/flux-handwriting', weight_name='lora.safetensors')
# Function to detect paper angle within bounding box
def detect_paper_angle(image, bounding_box):
x1, y1, x2, y2 = bounding_box
roi = np.array(image)[y1:y2, x1:x2]
gray = cv2.cvtColor(roi, cv2.COLOR_RGBA2GRAY)
edges = cv2.Canny(gray, 50, 150)
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=50, maxLineGap=10)
if lines is not None:
longest_line = max(lines, key=lambda line: np.linalg.norm((line[0][2] - line[0][0], line[0][3] - line[0][1])))
x1, y1, x2, y2 = longest_line[0]
dx = x2 - x1
dy = y2 - y1
angle = degrees(atan2(dy, dx))
return angle
else:
return 0
# Function to process image and overlay text
def process_image(image, text):
try:
# Initialize Roboflow
rf = Roboflow(api_key=ROBOFLOW_API_KEY)
logging.debug("Initialized Roboflow API.")
project = rf.workspace().project(PROJECT_NAME)
logging.debug("Accessed project in Roboflow.")
model = project.version(VERSION_NUMBER).model
logging.debug("Loaded model from Roboflow.")
# Save input image temporarily
input_image_path = "/tmp/input_image.jpg"
image.save(input_image_path)
logging.debug(f"Input image saved to {input_image_path}.")
# Perform inference
logging.debug("Performing inference on the image...")
prediction = model.predict(input_image_path, confidence=70, overlap=50).json()
logging.debug(f"Inference result: {prediction}")
# Open the image for processing
pil_image = image.convert("RGBA")
logging.debug("Converted image to RGBA mode.")
# Iterate over detected objects
for obj in prediction['predictions']:
white_paper_width = obj['width']
white_paper_height = obj['height']
padding_x = int(white_paper_width * 0.1)
padding_y = int(white_paper_height * 0.1)
box_width = white_paper_width - 2 * padding_x
box_height = white_paper_height - 2 * padding_y
logging.debug(f"Padded white paper dimensions: width={box_width}, height={box_height}.")
x1_padded = int(obj['x'] - white_paper_width / 2 + padding_x)
y1_padded = int(obj['y'] - white_paper_height / 2 + padding_y)
x2_padded = int(obj['x'] + white_paper_width / 2 - padding_x)
y2_padded = int(obj['y'] + white_paper_height / 2 - padding_y)
# Detect paper angle
angle = detect_paper_angle(np.array(image), (x1_padded, y1_padded, x2_padded, y2_padded))
logging.debug(f"Detected paper angle: {angle} degrees.")
# Generate handwriting image with transparent background
prompt = f'HWRIT handwriting saying "{text}", neat style, black ink on transparent background'
generated_image = pipeline(prompt).images[0].convert("RGBA")
logging.debug("Generated handwriting image.")
# Resize generated handwriting to fit the detected area
generated_image = generated_image.resize((box_width, box_height), Image.ANTIALIAS)
# Create a mask for the generated handwriting
mask = generated_image.split()[3]
# Rotate the generated handwriting to match the detected paper angle
rotated_handwriting = generated_image.rotate(-angle, resample=Image.BICUBIC, center=(box_width // 2, box_height // 2))
mask = mask.rotate(-angle, resample=Image.BICUBIC, center=(box_width // 2, box_height // 2))
# Paste the rotated handwriting onto the original image
pil_image.paste(rotated_handwriting, (x1_padded, y1_padded), mask)
logging.debug("Pasted generated handwriting onto the original image.")
# Save and return output image path
output_image_path = "/tmp/output_image.png"
pil_image.convert("RGB").save(output_image_path)
logging.debug(f"Output image saved to {output_image_path}.")
return output_image_path
except Exception as e:
logging.error(f"Error during image processing: {e}")
return None
# Gradio interface function
def gradio_inference(image, text):
logging.debug("Starting Gradio inference.")
result_path = process_image(image, text)
if result_path:
logging.debug("Gradio inference successful.")
return result_path, result_path, "Processing complete! Download the image below."
logging.error("Gradio inference failed.")
return None, None, "An error occurred while processing the image. Please check the logs."
# Gradio interface
# Gradio interface
interface = gr.Interface(
fn=gradio_inference,
inputs=[
gr.Image(type="pil", label="Upload an Image"), # Upload an image
gr.Textbox(label="Enter Text to Overlay"), # Enter text to overlay
],
outputs=[
gr.Image(label="Processed Image Preview"), # Preview the processed image
gr.File(label="Download Processed Image"), # Download the image
gr.Textbox(label="Status"), # Status message
],
title="Handwriting Overlay on White Paper",
description=(
"Upload an image with white paper detected, and enter the text to overlay. "
"This app will generate handwriting using the FLUX handwriting model and overlay it on the detected white paper. "
"Preview or download the output image below."
),
allow_flagging="never", # Disables flagging
)
# Launch the Gradio app
if __name__ == "__main__":
logging.debug("Launching Gradio interface.")
interface.launch(share=True)