File size: 7,380 Bytes
42a0d43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import joblib
from train_model import extract_features
import numpy as np
import os
import logging
import soundfile as sf
import librosa
import traceback

logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

def verify_audio_file(file_path):
    """Verify if the audio file is valid and can be processed."""
    try:
        print(f"[DEBUG] Starting audio file verification for: {file_path}")
        logger.debug(f"Starting audio file verification for: {file_path}")
        
        # Check basic file properties
        if not os.path.exists(file_path):
            print(f"[ERROR] File not found: {file_path}")
            logger.error(f"File not found: {file_path}")
            return False
            
        file_size = os.path.getsize(file_path)
        print(f"[DEBUG] File size: {file_size} bytes")
        logger.debug(f"File size: {file_size} bytes")
        if file_size == 0:
            print("[ERROR] File is empty")
            logger.error("File is empty")
            return False
            
        # Try reading with soundfile
        try:
            print("[DEBUG] Attempting to read with soundfile...")
            logger.debug("Attempting to read with soundfile...")
            with sf.SoundFile(file_path) as audio_file:
                print(f"[DEBUG] SoundFile success - Sample rate: {audio_file.samplerate}Hz, "
                      f"Channels: {audio_file.channels}, Frames: {audio_file.frames}")
                logger.debug(f"SoundFile success - Sample rate: {audio_file.samplerate}Hz, "
                          f"Channels: {audio_file.channels}, Frames: {audio_file.frames}")
                if audio_file.frames == 0:
                    print("[ERROR] Audio file has no frames")
                    logger.error("Audio file has no frames")
                    return False
        except Exception as e:
            print(f"[WARNING] SoundFile read failed: {str(e)}")
            logger.warning(f"SoundFile read failed with error: {str(e)}")
            logger.debug(f"Full traceback: {traceback.format_exc()}")
            # Don't return False here, try librosa as backup
            
        # Try reading with librosa
        try:
            print("[DEBUG] Attempting to read with librosa...")
            logger.debug("Attempting to read with librosa...")
            y, sr = librosa.load(file_path, duration=1, sr=None)
            print(f"[DEBUG] Librosa success - Sample rate: {sr}Hz, Length: {len(y)} samples")
            logger.debug(f"Librosa success - Sample rate: {sr}Hz, Length: {len(y)} samples")
            if len(y) == 0:
                print("[ERROR] Librosa loaded empty audio data")
                logger.error("Librosa loaded empty audio data")
                return False
            return True
        except Exception as e:
            print(f"[ERROR] Librosa read failed: {str(e)}")
            logger.error(f"Librosa read failed with error: {str(e)}")
            logger.debug(f"Full traceback: {traceback.format_exc()}")
            return False
            
    except Exception as e:
        print(f"[ERROR] Error in verify_audio_file: {str(e)}")
        logger.error(f"Error in verify_audio_file: {str(e)}")
        logger.debug(f"Full traceback: {traceback.format_exc()}")
        return False

def predict_healing_music(audio_path):
    """
    Predict whether a music file is healing or not.
    Returns: probability of being healing music (0-1)
    """
    try:
        # Step 1: Verify audio file
        print(f"[DEBUG] Starting prediction process for: {audio_path}")
        logger.info(f"Starting prediction process for: {audio_path}")
        if not verify_audio_file(audio_path):
            print("[ERROR] Audio file verification failed")
            logger.error("Audio file verification failed")
            return None
            
        # Step 2: Load model and scaler
        try:
            print("[DEBUG] Loading model and scaler...")
            logger.info("Loading model and scaler...")
            if not os.path.exists('model.joblib') or not os.path.exists('scaler.joblib'):
                print("[ERROR] Model or scaler file not found")
                logger.error("Model or scaler file not found")
                return None
                
            model = joblib.load('model.joblib')
            scaler = joblib.load('scaler.joblib')
            print("[DEBUG] Model and scaler loaded successfully")
            logger.info("Model and scaler loaded successfully")
        except Exception as e:
            print(f"[ERROR] Error loading model or scaler: {str(e)}")
            logger.error(f"Error loading model or scaler: {str(e)}")
            return None
        
        # Step 3: Extract features
        try:
            print("[DEBUG] Starting feature extraction...")
            logger.info("Starting feature extraction...")
            features = extract_features(audio_path)
            if features is None:
                print("[ERROR] Feature extraction returned None")
                logger.error("Feature extraction returned None")
                return None
                
            # Verify feature dimensions
            expected_features = 38  # Updated to match our current feature extraction (26 MFCC + 12 Chroma)
            if len(features) != expected_features:
                print(f"[ERROR] Incorrect number of features. Expected {expected_features}, got {len(features)}")
                logger.error(f"Incorrect number of features. Expected {expected_features}, got {len(features)}")
                return None
                
            print(f"[DEBUG] Successfully extracted {len(features)} features")
            logger.info(f"Successfully extracted {len(features)} features")
            logger.debug(f"Feature values: {features}")
        except Exception as e:
            print(f"[ERROR] Error during feature extraction: {str(e)}")
            logger.error(f"Error during feature extraction: {str(e)}")
            logger.debug(f"Full traceback: {traceback.format_exc()}")
            return None
        
        # Step 4: Scale features
        try:
            print("[DEBUG] Scaling features...")
            logger.info("Scaling features...")
            features_scaled = scaler.transform(features.reshape(1, -1))
            print("[DEBUG] Features scaled successfully")
            logger.info("Features scaled successfully")
        except Exception as e:
            print(f"[ERROR] Error scaling features: {str(e)}")
            logger.error(f"Error scaling features: {str(e)}")
            return None
        
        # Step 5: Make prediction
        try:
            print("[DEBUG] Making prediction...")
            logger.info("Making prediction...")
            probability = model.predict_proba(features_scaled)[0][1]
            print(f"[DEBUG] Prediction successful: {probability:.2f}")
            logger.info(f"Prediction successful: {probability:.2f}")
            return probability
        except Exception as e:
            print(f"[ERROR] Error making prediction: {str(e)}")
            logger.error(f"Error making prediction: {str(e)}")
            return None
            
    except Exception as e:
        print(f"[ERROR] Unexpected error during prediction: {str(e)}")
        logger.error(f"Unexpected error during prediction: {str(e)}")
        return None