Spaces:
Configuration error
Configuration error
import gradio as gr | |
import os | |
from predict import predict_healing_music | |
import train_model | |
import logging | |
import tempfile | |
import time | |
import shutil | |
import socket | |
import joblib | |
# Set up logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' | |
) | |
logger = logging.getLogger(__name__) | |
def find_free_port(start_port=7860, max_port=7960): | |
"""Find a free port in the given range.""" | |
for port in range(start_port, max_port + 1): | |
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: | |
try: | |
s.bind(('', port)) | |
return port | |
except OSError: | |
continue | |
return None | |
# Ensure model directory exists | |
model_dir = os.path.join(os.path.dirname(__file__), "models") | |
os.makedirs(model_dir, exist_ok=True) | |
# Model file paths | |
model_path = os.path.join(model_dir, "model.joblib") | |
scaler_path = os.path.join(model_dir, "scaler.joblib") | |
# Check if model exists | |
if not os.path.exists(model_path) or not os.path.exists(scaler_path): | |
print('First run: Training the model...') | |
try: | |
train_model.train_and_evaluate_model() | |
print('Model training completed!') | |
except Exception as e: | |
print(f'Model training failed: {str(e)}') | |
raise e | |
def process_audio(audio_path): | |
""" | |
Process and analyze the audio file | |
""" | |
if audio_path is None: | |
return None, None, None, "Please upload an audio file" | |
model_dir = os.path.join(os.path.dirname(__file__), "models") | |
model_path = os.path.join(model_dir, "model.joblib") | |
scaler_path = os.path.join(model_dir, "scaler.joblib") | |
try: | |
# Load model and scaler | |
model = joblib.load(model_path) | |
scaler = joblib.load(scaler_path) | |
tmp_file = None | |
try: | |
# Create temporary file | |
suffix = os.path.splitext(audio_path)[1] | |
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=suffix) | |
shutil.copy2(audio_path, tmp_file.name) | |
# Make prediction | |
healing_probability = predict_healing_music(tmp_file.name) | |
if healing_probability is not None: | |
# Calculate percentage | |
healing_percentage = healing_probability * 100 | |
# Generate description | |
if healing_percentage >= 75: | |
description = "This music has strong healing properties! ✨" | |
color = "#15803d" # Dark green | |
elif healing_percentage >= 50: | |
description = "This music has moderate healing effects. 🌟" | |
color = "#0369a1" # Dark blue | |
else: | |
description = "This music has limited healing potential. 🎵" | |
color = "#b91c1c" # Dark red | |
return f"{healing_percentage:.1f}%", f'<div style="background-color: {color}; color: white; padding: 1rem; border-radius: 8px; text-align: center;">{description}</div>', None, None | |
else: | |
return "Error", "Error analyzing file. Please ensure it's a valid MP3 or WAV file.", None, None | |
except Exception as e: | |
logger.error(f"Error during analysis: {str(e)}") | |
return "Error", f"An unexpected error occurred: {str(e)}", None, None | |
finally: | |
# Clean up temporary file | |
if tmp_file is not None: | |
try: | |
tmp_file.close() | |
os.unlink(tmp_file.name) | |
except Exception as e: | |
logger.error(f"Failed to clean up temporary file: {str(e)}") | |
except Exception as e: | |
logger.error(f"Error during model loading: {str(e)}") | |
return "Error", f"An unexpected error occurred: {str(e)}", None, None | |
def analyze_audio(audio): | |
"""Analyze the audio file""" | |
try: | |
if audio is None: | |
return [ | |
gr.update(visible=False), # results | |
gr.update(visible=False), # analyzing | |
"", # healing_index | |
"" # result_text | |
] | |
# Show analyzing status first | |
yield [ | |
gr.update(visible=False), # results | |
gr.update(visible=True), # analyzing | |
"", # healing_index | |
"" # result_text | |
] | |
# Process audio and get results | |
index, desc, _, _ = process_audio(audio) | |
desc_with_hint = f'{desc}<div style="margin-top: 1rem; color: #9ca3af; font-size: 0.9rem;">To analyze another file, please refresh the page</div>' | |
# Return final results | |
yield [ | |
gr.update(visible=True), # results | |
gr.update(visible=False), # analyzing | |
index, # healing_index | |
desc_with_hint # result_text | |
] | |
except Exception as e: | |
logger.error(f"Error in analyze_audio: {str(e)}") | |
yield [ | |
gr.update(visible=True), # results | |
gr.update(visible=False), # analyzing | |
"Error", # healing_index | |
f"An error occurred: {str(e)}" # result_text | |
] | |
# Custom CSS styles | |
custom_css = """ | |
.gradio-container { | |
font-family: 'Inter', -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, sans-serif; | |
max-width: 800px !important; | |
margin: auto; | |
padding: 0 1rem; | |
background-color: #0f1117; | |
} | |
.container { | |
max-width: 700px; | |
margin: 0 auto; | |
padding-top: 2rem; | |
} | |
.header { | |
text-align: center; | |
margin-bottom: 1rem; | |
width: 100%; | |
display: flex; | |
justify-content: center; | |
align-items: center; | |
} | |
.title { | |
font-size: 2.5rem !important; | |
font-weight: 700 !important; | |
color: white !important; | |
margin: 0 !important; | |
line-height: 1.2 !important; | |
text-align: center !important; | |
white-space: nowrap !important; | |
} | |
.subtitle { | |
font-size: 1.2rem !important; | |
text-align: center; | |
color: #9ca3af !important; | |
margin-top: 0.5rem !important; | |
max-width: 800px; | |
margin-left: auto; | |
margin-right: auto; | |
white-space: nowrap !important; | |
} | |
.upload-box { | |
background-color: #1f2937; | |
border-radius: 12px; | |
padding: 2rem; | |
margin-bottom: 1rem; | |
border: 2px dashed #374151; | |
transition: all 0.3s ease; | |
} | |
.upload-box:hover { | |
border-color: #3b82f6; | |
box-shadow: 0 0 10px rgba(59, 130, 246, 0.2); | |
} | |
.upload-area { | |
display: flex; | |
flex-direction: column; | |
align-items: center; | |
justify-content: center; | |
gap: 1rem; | |
padding: 1.5rem 0; | |
} | |
.icon-text-container { | |
display: inline-flex; | |
align-items: center; | |
justify-content: center; | |
gap: 0.2rem; | |
white-space: nowrap; | |
} | |
.upload-icon { | |
color: #9ca3af; | |
font-size: 2rem; | |
line-height: 1; | |
margin-right: 0.1rem; | |
} | |
.upload-text { | |
color: white; | |
font-size: 1.1rem; | |
font-weight: 500; | |
line-height: 1; | |
} | |
.upload-hint { | |
color: #6b7280 !important; | |
font-size: 0.85rem !important; | |
margin-top: 0.5rem !important; | |
font-style: italic !important; | |
} | |
.progress-area { | |
margin: 1rem 0; | |
background-color: #1f2937; | |
border-radius: 12px; | |
padding: 1.5rem; | |
text-align: center; | |
} | |
.progress-text { | |
color: #60a5fa !important; | |
font-size: 1.2rem !important; | |
font-weight: 500 !important; | |
margin: 0 !important; | |
} | |
.results-container { | |
background-color: #1f2937; | |
border-radius: 12px; | |
padding: 1.25rem; | |
margin-top: 1rem; | |
animation: fadeIn 0.5s ease; | |
} | |
.result-title { | |
color: white !important; | |
font-size: 1.25rem !important; | |
font-weight: 600 !important; | |
margin-bottom: 0.5rem !important; | |
} | |
.healing-index { | |
font-size: 2.5rem !important; | |
font-weight: 700 !important; | |
text-align: center; | |
color: white !important; | |
margin: 0.5rem 0 !important; | |
animation: scaleIn 0.5s ease; | |
} | |
.result-text { | |
animation: slideIn 0.5s ease; | |
} | |
@keyframes fadeIn { | |
from { opacity: 0; transform: translateY(20px); } | |
to { opacity: 1; transform: translateY(0); } | |
} | |
@keyframes scaleIn { | |
from { transform: scale(0.8); opacity: 0; } | |
to { transform: scale(1); opacity: 1; } | |
} | |
@keyframes slideIn { | |
from { transform: translateY(10px); opacity: 0; } | |
to { transform: translateY(0); opacity: 1; } | |
} | |
""" | |
# Create Gradio interface | |
with gr.Blocks( | |
title="Healing Music Classifier", | |
css=custom_css, | |
theme=gr.themes.Default() | |
) as demo: | |
with gr.Column(elem_classes="container"): | |
with gr.Row(elem_classes="header"): | |
gr.Markdown("🎵 Healing Music Classifier", elem_classes="title") | |
gr.Markdown( | |
"Upload your music file, and our model will analyze its healing potential!", | |
elem_classes="subtitle" | |
) | |
with gr.Column(elem_classes="upload-box"): | |
with gr.Column(elem_classes="upload-area"): | |
gr.Markdown("☁️ Drop your audio file here", elem_classes="icon-text-container") | |
audio_input = gr.Audio( | |
label="Audio Input", | |
sources=["upload"], | |
type="filepath", | |
elem_classes="audio-input", | |
interactive=True, | |
label_visible=False, | |
text="Drop audio file here or click to upload" | |
) | |
gr.Markdown("Limit 200MB per file • MP3, WAV", elem_classes="upload-hint") | |
# Add analyzing status | |
with gr.Column(elem_classes="analyzing-status", visible=False) as analyzing: | |
gr.Markdown( | |
"""<div style="display: flex; align-items: center; justify-content: center; gap: 0.5rem;"> | |
<div class="loading-spinner"></div> | |
<span style="color: #60a5fa;">Analyzing your music...</span> | |
</div>""", | |
elem_classes="analyzing-text" | |
) | |
with gr.Column(elem_classes="results-container", visible=False) as results: | |
gr.Markdown("Analysis Results", elem_classes="result-title") | |
healing_index = gr.Markdown("", elem_classes="healing-index") | |
result_text = gr.Markdown("", elem_classes="result-text") | |
# Add loading spinner CSS | |
demo.load(None, None, None, _js=""" | |
() => { | |
const style = document.createElement('style'); | |
style.textContent = ` | |
.loading-spinner { | |
width: 20px; | |
height: 20px; | |
border: 3px solid #60a5fa; | |
border-top: 3px solid transparent; | |
border-radius: 50%; | |
animation: spin 1s linear infinite; | |
} | |
@keyframes spin { | |
0% { transform: rotate(0deg); } | |
100% { transform: rotate(360deg); } | |
} | |
`; | |
document.head.appendChild(style); | |
} | |
""") | |
# Audio analysis event | |
audio_input.upload( | |
fn=analyze_audio, | |
inputs=[audio_input], | |
outputs=[ | |
results, | |
analyzing, | |
healing_index, | |
result_text | |
], | |
queue=True | |
) | |
# Launch application | |
if __name__ == "__main__": | |
demo.launch() # 简化启动配置,让Hugging Face处理端口等 | |