import joblib from train_model import extract_features import numpy as np import os import logging import soundfile as sf import librosa import traceback logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) def verify_audio_file(file_path): """Verify if the audio file is valid and can be processed.""" try: print(f"[DEBUG] Starting audio file verification for: {file_path}") logger.debug(f"Starting audio file verification for: {file_path}") # Check basic file properties if not os.path.exists(file_path): print(f"[ERROR] File not found: {file_path}") logger.error(f"File not found: {file_path}") return False file_size = os.path.getsize(file_path) print(f"[DEBUG] File size: {file_size} bytes") logger.debug(f"File size: {file_size} bytes") if file_size == 0: print("[ERROR] File is empty") logger.error("File is empty") return False # Try reading with soundfile try: print("[DEBUG] Attempting to read with soundfile...") logger.debug("Attempting to read with soundfile...") with sf.SoundFile(file_path) as audio_file: print(f"[DEBUG] SoundFile success - Sample rate: {audio_file.samplerate}Hz, " f"Channels: {audio_file.channels}, Frames: {audio_file.frames}") logger.debug(f"SoundFile success - Sample rate: {audio_file.samplerate}Hz, " f"Channels: {audio_file.channels}, Frames: {audio_file.frames}") if audio_file.frames == 0: print("[ERROR] Audio file has no frames") logger.error("Audio file has no frames") return False except Exception as e: print(f"[WARNING] SoundFile read failed: {str(e)}") logger.warning(f"SoundFile read failed with error: {str(e)}") logger.debug(f"Full traceback: {traceback.format_exc()}") # Don't return False here, try librosa as backup # Try reading with librosa try: print("[DEBUG] Attempting to read with librosa...") logger.debug("Attempting to read with librosa...") y, sr = librosa.load(file_path, duration=1, sr=None) print(f"[DEBUG] Librosa success - Sample rate: {sr}Hz, Length: {len(y)} samples") logger.debug(f"Librosa success - Sample rate: {sr}Hz, Length: {len(y)} samples") if len(y) == 0: print("[ERROR] Librosa loaded empty audio data") logger.error("Librosa loaded empty audio data") return False return True except Exception as e: print(f"[ERROR] Librosa read failed: {str(e)}") logger.error(f"Librosa read failed with error: {str(e)}") logger.debug(f"Full traceback: {traceback.format_exc()}") return False except Exception as e: print(f"[ERROR] Error in verify_audio_file: {str(e)}") logger.error(f"Error in verify_audio_file: {str(e)}") logger.debug(f"Full traceback: {traceback.format_exc()}") return False def predict_healing_music(audio_path): """ Predict whether a music file is healing or not. Returns: probability of being healing music (0-1) """ try: # Step 1: Verify audio file print(f"[DEBUG] Starting prediction process for: {audio_path}") logger.info(f"Starting prediction process for: {audio_path}") if not verify_audio_file(audio_path): print("[ERROR] Audio file verification failed") logger.error("Audio file verification failed") return None # Step 2: Load model and scaler try: print("[DEBUG] Loading model and scaler...") logger.info("Loading model and scaler...") if not os.path.exists('model.joblib') or not os.path.exists('scaler.joblib'): print("[ERROR] Model or scaler file not found") logger.error("Model or scaler file not found") return None model = joblib.load('model.joblib') scaler = joblib.load('scaler.joblib') print("[DEBUG] Model and scaler loaded successfully") logger.info("Model and scaler loaded successfully") except Exception as e: print(f"[ERROR] Error loading model or scaler: {str(e)}") logger.error(f"Error loading model or scaler: {str(e)}") return None # Step 3: Extract features try: print("[DEBUG] Starting feature extraction...") logger.info("Starting feature extraction...") features = extract_features(audio_path) if features is None: print("[ERROR] Feature extraction returned None") logger.error("Feature extraction returned None") return None # Verify feature dimensions expected_features = 38 # Updated to match our current feature extraction (26 MFCC + 12 Chroma) if len(features) != expected_features: print(f"[ERROR] Incorrect number of features. Expected {expected_features}, got {len(features)}") logger.error(f"Incorrect number of features. Expected {expected_features}, got {len(features)}") return None print(f"[DEBUG] Successfully extracted {len(features)} features") logger.info(f"Successfully extracted {len(features)} features") logger.debug(f"Feature values: {features}") except Exception as e: print(f"[ERROR] Error during feature extraction: {str(e)}") logger.error(f"Error during feature extraction: {str(e)}") logger.debug(f"Full traceback: {traceback.format_exc()}") return None # Step 4: Scale features try: print("[DEBUG] Scaling features...") logger.info("Scaling features...") features_scaled = scaler.transform(features.reshape(1, -1)) print("[DEBUG] Features scaled successfully") logger.info("Features scaled successfully") except Exception as e: print(f"[ERROR] Error scaling features: {str(e)}") logger.error(f"Error scaling features: {str(e)}") return None # Step 5: Make prediction try: print("[DEBUG] Making prediction...") logger.info("Making prediction...") probability = model.predict_proba(features_scaled)[0][1] print(f"[DEBUG] Prediction successful: {probability:.2f}") logger.info(f"Prediction successful: {probability:.2f}") return probability except Exception as e: print(f"[ERROR] Error making prediction: {str(e)}") logger.error(f"Error making prediction: {str(e)}") return None except Exception as e: print(f"[ERROR] Unexpected error during prediction: {str(e)}") logger.error(f"Unexpected error during prediction: {str(e)}") return None