import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM # تحميل النموذج والـ Tokenizer model_path = "inceptionai/jais-13b" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", trust_remote_code=True) # دالة للحصول على الإجابة def get_response(text): input_ids = tokenizer(text, return_tensors="pt").input_ids inputs = input_ids.to("cuda" if torch.cuda.is_available() else "cpu") input_len = inputs.shape[-1] generate_ids = model.generate( inputs, top_p=0.9, temperature=0.3, max_length=200 - input_len, min_length=input_len + 4, repetition_penalty=1.2, do_sample=True, ) response = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)[0] return response # واجهة Gradio iface = gr.Interface( fn=get_response, inputs="text", outputs="text", title="Jais-13b Demo", description="تجربة نموذج Jais-13b للغة العربية." ) iface.launch()