Spaces:
Runtime error
Runtime error
Update main_test_SRMNet.py
Browse files- main_test_SRMNet.py +17 -19
main_test_SRMNet.py
CHANGED
@@ -14,24 +14,6 @@ from natsort import natsorted
|
|
14 |
from model.SRMNet import SRMNet
|
15 |
from utils import util_calculate_psnr_ssim as util
|
16 |
|
17 |
-
|
18 |
-
def save_img(filepath, img):
|
19 |
-
cv2.imwrite(filepath, cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
|
20 |
-
|
21 |
-
|
22 |
-
def load_checkpoint(model, weights):
|
23 |
-
checkpoint = torch.load(weights)
|
24 |
-
try:
|
25 |
-
model.load_state_dict(checkpoint["state_dict"])
|
26 |
-
except:
|
27 |
-
state_dict = checkpoint["state_dict"]
|
28 |
-
new_state_dict = OrderedDict()
|
29 |
-
for k, v in state_dict.items():
|
30 |
-
name = k[7:] # remove `module.`
|
31 |
-
new_state_dict[name] = v
|
32 |
-
model.load_state_dict(new_state_dict)
|
33 |
-
|
34 |
-
|
35 |
def main():
|
36 |
parser = argparse.ArgumentParser(description='Demo Image Denoising')
|
37 |
parser.add_argument('--input_dir', default='test/', type=str, help='Input images')
|
@@ -47,7 +29,7 @@ def main():
|
|
47 |
|
48 |
os.makedirs(out_dir, exist_ok=True)
|
49 |
|
50 |
-
files = natsorted(glob(os.path.join(inp_dir, '*')))
|
51 |
|
52 |
if len(files) == 0:
|
53 |
raise Exception(f"No files found at {inp_dir}")
|
@@ -82,6 +64,22 @@ def main():
|
|
82 |
save_img((os.path.join(out_dir, f + '.png')), restored)
|
83 |
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
def setup(args):
|
86 |
save_dir = 'result/'
|
87 |
folder = 'test/'
|
|
|
14 |
from model.SRMNet import SRMNet
|
15 |
from utils import util_calculate_psnr_ssim as util
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def main():
|
18 |
parser = argparse.ArgumentParser(description='Demo Image Denoising')
|
19 |
parser.add_argument('--input_dir', default='test/', type=str, help='Input images')
|
|
|
29 |
|
30 |
os.makedirs(out_dir, exist_ok=True)
|
31 |
|
32 |
+
files = natsorted(glob.glob(os.path.join(inp_dir, '*')))
|
33 |
|
34 |
if len(files) == 0:
|
35 |
raise Exception(f"No files found at {inp_dir}")
|
|
|
64 |
save_img((os.path.join(out_dir, f + '.png')), restored)
|
65 |
|
66 |
|
67 |
+
def save_img(filepath, img):
|
68 |
+
cv2.imwrite(filepath, cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
|
69 |
+
|
70 |
+
|
71 |
+
def load_checkpoint(model, weights):
|
72 |
+
checkpoint = torch.load(weights)
|
73 |
+
try:
|
74 |
+
model.load_state_dict(checkpoint["state_dict"])
|
75 |
+
except:
|
76 |
+
state_dict = checkpoint["state_dict"]
|
77 |
+
new_state_dict = OrderedDict()
|
78 |
+
for k, v in state_dict.items():
|
79 |
+
name = k[7:] # remove `module.`
|
80 |
+
new_state_dict[name] = v
|
81 |
+
model.load_state_dict(new_state_dict)
|
82 |
+
|
83 |
def setup(args):
|
84 |
save_dir = 'result/'
|
85 |
folder = 'test/'
|