Safi commited on
Commit
6320c2c
·
1 Parent(s): 0a8d0e5
Files changed (9) hide show
  1. app.ipynb +0 -0
  2. app.py +14 -4
  3. apple.png +0 -0
  4. export.pkl +3 -0
  5. guacamole.png +0 -0
  6. my_first_space/__init__.py +1 -0
  7. my_first_space/app.py +26 -0
  8. owl.png +0 -0
  9. parrot.png +0 -0
app.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
app.py CHANGED
@@ -1,7 +1,17 @@
 
1
  import gradio as gr
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
5
 
6
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastai.vision.all import *
2
  import gradio as gr
3
 
4
+ learn = load_learner('export.pkl')
 
5
 
6
+ catagories = 'apple','barn owl','guacamole','parrot',
7
+
8
+ def classify_img(img):
9
+ pred_class,pred_idx,probs = learn.predict(img)
10
+ return dict(zip(catagories, map(float,probs)))
11
+
12
+ image = gr.inputs.Image(shape=(256,256))
13
+ label = gr.outputs.Label()
14
+ examples = ['apple.png','owl.png','parrot.png','guacamole.png']
15
+
16
+ intf = gr.Interface(fn=classify_img, inputs=image, outputs=label, examples=examples)
17
+ intf.launch(share = True)
apple.png ADDED
export.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c789dde10e144e3bfd2792c39db679dd02c4c12985873422f34f01a35d0507b
3
+ size 46976421
guacamole.png ADDED
my_first_space/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ __version__ = "0.0.1"
my_first_space/app.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # AUTOGENERATED! DO NOT EDIT! File to edit: ..\app.ipynb.
2
+
3
+ # %% auto 0
4
+ __all__ = ['learn', 'catagories', 'image', 'label', 'examples', 'intf', 'classify_img']
5
+
6
+ # %% ..\app.ipynb 1
7
+ from fastai.vision.all import *
8
+ import gradio as gr
9
+
10
+ # %% ..\app.ipynb 5
11
+ learn = load_learner('export.pkl')
12
+
13
+ # %% ..\app.ipynb 7
14
+ catagories = 'apple','barn owl','guacamole','parrot',
15
+
16
+ def classify_img(img):
17
+ pred_class,pred_idx,probs = learn.predict(img)
18
+ return dict(zip(catagories, map(float,probs)))
19
+
20
+ # %% ..\app.ipynb 9
21
+ image = gr.inputs.Image(shape=(256,256))
22
+ label = gr.outputs.Label()
23
+ examples = ['apple.png','owl.png','parrot.png','guacamole.png']
24
+
25
+ intf = gr.Interface(fn=classify_img, inputs=image, outputs=label, examples=examples)
26
+ intf.launch(share = True)
owl.png ADDED
parrot.png ADDED