from fastai.vision.all import * import gradio as gr learn = load_learner('export3.pkl') #catagories = 'apple','barn owl','guacamole','parrot', catagories = ["white Panthera tigris (White Tiger)", "Panthera tigris (Tiger)", "Acinonyx jubatus (Cheetah)", "Canis familiaris (Dog)", "Canis aureus (Jackal)", "Equus caballus (Horse)", "Equus asinus (Donkey)", "Mister Lincoln (Rose)", "Hibiscus rosa-sinensis (Shoeblackplant)", "Litchi chinensis (Lichu)", "Fragaria ananassa (Strawberry)",] catagories.sort() def classify_img(img): pred_class,pred_idx,probs = learn.predict(img) return dict(zip(catagories, map(float,probs))) image = gr.inputs.Image(shape=(256,256)) label = gr.outputs.Label() #examples = ['apple.png','owl.png','parrot.png','guacamole.png'] intf = gr.Interface(fn=classify_img, inputs=image, outputs=label,)# examples=examples) intf.launch()