File size: 5,543 Bytes
0841eca
8ccf632
 
 
 
 
db4478e
 
bb18612
 
 
 
db4478e
06f0278
beb85d3
bb18612
06f0278
8ccf632
 
 
06f0278
8ccf632
b83a14e
6756bf5
 
 
1552b2e
 
 
b83a14e
 
bb18612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
837a56e
54192f0
 
bb18612
837a56e
ac67a14
 
 
 
 
db4478e
 
 
 
 
 
ac67a14
8ccf632
ac3d055
 
 
8ccf632
 
b83a14e
 
8ccf632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a779d1
8ccf632
 
 
 
 
 
2b62414
8ccf632
 
 
 
 
b45a5e9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import gradio as gr
import numpy as np
import random
import spaces
import torch
import tempfile
import os
import requests
import time
from io import BytesIO

from PIL import Image

token = os.environ["API_TOKEN"]
model = "black-forest-labs/FLUX.1-schnell"
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

custom_css = """
.built-with {
    display: none !important;
}
.show-api {
    display: none !important;
}
"""

def text_to_image(prompt, height, width, seed, num_inference_steps,
                  model=model,
                  token=token):
    """
    Generate an image from a text prompt using the Hugging Face Inference API.
    Returns a PIL Image (JPEG) if successful, otherwise returns None after retrying.

    Parameters:
        prompt (str): The text prompt describing the image.
        height (int): Height of the generated image.
        width (int): Width of the generated image.
        seed (int): Random seed for generation reproducibility.
        num_inference_steps (int): Number of inference steps.
        model (str): Hugging Face model identifier.
        token (str): Hugging Face API token.

    Returns:
        PIL.Image.Image or None: The generated image as a PIL Image object or None on failure.
    """
    api_url = f"https://api-inference.huggingface.co/models/{model}"
    headers = {
        "Authorization": f"Bearer {token}"
    }
    payload = {
        "inputs": prompt,
        "parameters": {
            "height": height,
            "width": width,
            "seed": seed,
            "num_inference_steps": num_inference_steps
        }
    }
    for attempt in range(1, 4):
        response = requests.post(api_url, headers=headers, json=payload)
        if response.status_code == 200:
            try:
                image = Image.open(BytesIO(response.content))
                if image.format != 'JPEG':
                    with BytesIO() as output:
                        image.convert("RGB").save(output, format="JPEG")
                        output.seek(0)
                        image = Image.open(output)
                return image
            except Exception as e:
                print(f"Error processing the image data: {e}")
        else:
            print(f"Attempt {attempt}: Request failed with status code {response.status_code}")
        
        if attempt == 1:
            print("Waiting for 3 seconds before retrying...")
            time.sleep(3)
        elif attempt == 2:
            print("Waiting for 5 seconds before retrying...")
            time.sleep(5)
    return None

def infer(prompt, seed=42, randomize_seed=True, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    image = text_to_image(
        prompt,
        height=height,
        width=width,
        seed=seed,
        num_inference_steps=4
    )
    temp_dir = tempfile.gettempdir()
    temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg", dir=temp_dir)
    image.save(temp_file, format="JPEG")
    temp_file_path = temp_file.name
    temp_file.close()
    return temp_file_path, seed

examples = [
    "A girl and a boy dancing in the forest",
    "Tiny cat in a space suite in the moon",
    "an anime illustration of girl holding book in her hand in a library",
]

with gr.Blocks(css=custom_css) as demo:

    with gr.Column(elem_id="col-container"):
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():
                
  
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=4,
                )
        
        gr.Examples(
            examples = examples,
            fn = infer,
            inputs = [prompt],
            outputs = [result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
        outputs = [result, seed]
    )

demo.launch()#show_api=False)