import os import gradio as gr import numpy as np import random import spaces import torch import tempfile import os import requests import time from io import BytesIO from PIL import Image token = os.environ["API_TOKEN"] model = "black-forest-labs/FLUX.1-schnell" dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 custom_css = """ .built-with { display: none !important; } .show-api { display: none !important; } """ def text_to_image(prompt, height, width, seed, num_inference_steps, model=model, token=token): """ Generate an image from a text prompt using the Hugging Face Inference API. Returns a PIL Image (JPEG) if successful, otherwise returns None after retrying. Parameters: prompt (str): The text prompt describing the image. height (int): Height of the generated image. width (int): Width of the generated image. seed (int): Random seed for generation reproducibility. num_inference_steps (int): Number of inference steps. model (str): Hugging Face model identifier. token (str): Hugging Face API token. Returns: PIL.Image.Image or None: The generated image as a PIL Image object or None on failure. """ api_url = f"https://api-inference.huggingface.co/models/{model}" headers = { "Authorization": f"Bearer {token}" } payload = { "inputs": prompt, "parameters": { "height": height, "width": width, "seed": seed, "num_inference_steps": num_inference_steps } } for attempt in range(1, 4): response = requests.post(api_url, headers=headers, json=payload) if response.status_code == 200: try: image = Image.open(BytesIO(response.content)) if image.format != 'JPEG': with BytesIO() as output: image.convert("RGB").save(output, format="JPEG") output.seek(0) image = Image.open(output) return image except Exception as e: print(f"Error processing the image data: {e}") else: print(f"Attempt {attempt}: Request failed with status code {response.status_code}") if attempt == 1: print("Waiting for 3 seconds before retrying...") time.sleep(3) elif attempt == 2: print("Waiting for 5 seconds before retrying...") time.sleep(5) return None def infer(prompt, seed=42, randomize_seed=True, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) image = text_to_image( prompt, height=height, width=width, seed=seed, num_inference_steps=4 ) temp_dir = tempfile.gettempdir() temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg", dir=temp_dir) image.save(temp_file, format="JPEG") temp_file_path = temp_file.name temp_file.close() return temp_file_path, seed examples = [ "A girl and a boy dancing in the forest", "Tiny cat in a space suite in the moon", "an anime illustration of girl holding book in her hand in a library", ] with gr.Blocks(css=custom_css) as demo: with gr.Column(elem_id="col-container"): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=4, ) gr.Examples( examples = examples, fn = infer, inputs = [prompt], outputs = [result, seed], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit], fn = infer, inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps], outputs = [result, seed] ) demo.launch()#show_api=False)