Spaces:
Runtime error
Runtime error
Add token distribution chart and token count variability
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import plotly.graph_objects as go
|
|
|
4 |
import numpy as np
|
5 |
|
6 |
|
@@ -21,31 +22,41 @@ def reload_example_text_data(selected_language, selected_tokenizers):
|
|
21 |
|
22 |
val_data = load_data()
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
with st.sidebar:
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
"facebook/mbart-large-50",
|
41 |
-
"EleutherAI/gpt-neox-20b",
|
42 |
-
]
|
43 |
-
selected_tokenizers = st.multiselect(
|
44 |
-
"Select tokenizers",
|
45 |
-
options=tokenizer_names_to_test,
|
46 |
-
default=["openai/gpt4", "Xenova/gpt-4o"],
|
47 |
-
label_visibility="collapsed",
|
48 |
-
)
|
49 |
links = [
|
50 |
(
|
51 |
f"[{tokenizer_name}](https://huggingface.co/{tokenizer_name})"
|
@@ -70,37 +81,33 @@ st.subheader(f"**Sampled Text:** `{selected_text}`")
|
|
70 |
st.subheader("Number of Tokens")
|
71 |
st.table(st.session_state.examplesdf)
|
72 |
|
73 |
-
#
|
74 |
-
|
75 |
-
for tokenizer in selected_tokenizers:
|
76 |
-
tokens = val_data[tokenizer].dropna()
|
77 |
-
median = np.median(tokens)
|
78 |
-
min_tokens = np.min(tokens)
|
79 |
-
max_tokens = np.max(tokens)
|
80 |
-
std_dev = np.std(tokens)
|
81 |
-
tokenizer_metrics[tokenizer] = {
|
82 |
-
"Median": median,
|
83 |
-
"Min": min_tokens,
|
84 |
-
"Max": max_tokens,
|
85 |
-
"Range": max_tokens - min_tokens,
|
86 |
-
"Standard Deviation": std_dev,
|
87 |
-
}
|
88 |
-
|
89 |
-
# Display metrics
|
90 |
-
st.subheader("Tokenizer Metrics")
|
91 |
-
st.json(tokenizer_metrics)
|
92 |
-
|
93 |
-
# Plot for top tokenizers by median token length
|
94 |
-
sorted_tokenizers = sorted(tokenizer_metrics.items(), key=lambda x: x[1]["Median"])
|
95 |
-
shortest_median = sorted_tokenizers[:5]
|
96 |
-
longest_median = sorted_tokenizers[-5:]
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
101 |
fig.update_layout(
|
102 |
-
title="
|
103 |
-
xaxis_title="
|
104 |
-
yaxis_title="
|
|
|
105 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
st.plotly_chart(fig)
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import plotly.graph_objects as go
|
4 |
+
from plotly.subplots import make_subplots
|
5 |
import numpy as np
|
6 |
|
7 |
|
|
|
22 |
|
23 |
val_data = load_data()
|
24 |
|
25 |
+
tokenizer_names_to_test = [
|
26 |
+
"openai/gpt4",
|
27 |
+
"Xenova/gpt-4o",
|
28 |
+
"Xenova/claude-tokenizer",
|
29 |
+
"CohereForAI/aya-101",
|
30 |
+
"meta-llama/Meta-Llama-3-70B",
|
31 |
+
"mistralai/Mixtral-8x22B-v0.1",
|
32 |
+
"google/gemma-7b",
|
33 |
+
"facebook/nllb-200-distilled-600M",
|
34 |
+
"xlm-roberta-base",
|
35 |
+
"bert-base-uncased",
|
36 |
+
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
37 |
+
"bigscience/bloom",
|
38 |
+
"StabilityAI/stablelm-base-alpha-7b",
|
39 |
+
"google/flan-t5-base",
|
40 |
+
"facebook/mbart-large-50",
|
41 |
+
"EleutherAI/gpt-neox-20b",
|
42 |
+
]
|
43 |
+
|
44 |
with st.sidebar:
|
45 |
+
all_tokenizers = st.checkbox("Select All Tokenizers")
|
46 |
+
if all_tokenizers:
|
47 |
+
selected_tokenizers = tokenizer_names_to_test
|
48 |
+
else:
|
49 |
+
selected_tokenizers = st.multiselect(
|
50 |
+
"Select tokenizers",
|
51 |
+
options=tokenizer_names_to_test,
|
52 |
+
default=[
|
53 |
+
"openai/gpt4",
|
54 |
+
"Xenova/gpt-4o",
|
55 |
+
"CohereForAI/aya-101",
|
56 |
+
"Xenova/claude-tokenizer",
|
57 |
+
],
|
58 |
+
label_visibility="collapsed",
|
59 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
links = [
|
61 |
(
|
62 |
f"[{tokenizer_name}](https://huggingface.co/{tokenizer_name})"
|
|
|
81 |
st.subheader("Number of Tokens")
|
82 |
st.table(st.session_state.examplesdf)
|
83 |
|
84 |
+
# Create a distribution plot for token density across selected tokenizers
|
85 |
+
import plotly.figure_factory as ff
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
# Collecting data for all selected tokenizers
|
88 |
+
hist_data = [val_data[tokenizer].dropna() for tokenizer in selected_tokenizers]
|
89 |
+
|
90 |
+
# Creating the distplot with optional histogram
|
91 |
+
fig = ff.create_distplot(
|
92 |
+
hist_data, selected_tokenizers, show_hist=False, show_rug=False
|
93 |
+
)
|
94 |
fig.update_layout(
|
95 |
+
title="Token Distribution Density",
|
96 |
+
xaxis_title="Number of Tokens",
|
97 |
+
yaxis_title="Density",
|
98 |
+
height=500,
|
99 |
)
|
100 |
+
st.plotly_chart(fig, use_container_width=True)
|
101 |
+
|
102 |
+
|
103 |
+
tokenizer_to_num_tokens = {
|
104 |
+
name: val_data[name].tolist() for name in selected_tokenizers
|
105 |
+
}
|
106 |
+
|
107 |
+
fig = go.Figure()
|
108 |
+
for tokenizer_name in selected_tokenizers:
|
109 |
+
fig.add_trace(
|
110 |
+
go.Box(y=tokenizer_to_num_tokens[tokenizer_name], name=tokenizer_name)
|
111 |
+
)
|
112 |
+
fig.update_layout(title="Token Count Variability")
|
113 |
st.plotly_chart(fig)
|