Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
Automatically generated by Colaboratory.
|
3 |
+
|
4 |
+
Original file is located at
|
5 |
+
https://colab.research.google.com/drive/1_cVBwxsa7LcHzjzCcS4l1ds0wxNPQrjm
|
6 |
+
"""
|
7 |
+
|
8 |
+
from google.colab import drive
|
9 |
+
drive.mount('/content/drive')
|
10 |
+
|
11 |
+
import pandas as pd
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
import warnings
|
15 |
+
warnings.filterwarnings('ignore') # to avoid warnings
|
16 |
+
|
17 |
+
import random
|
18 |
+
import pandas as pd
|
19 |
+
from tqdm import tqdm
|
20 |
+
import seaborn as sns
|
21 |
+
import matplotlib.pyplot as plt
|
22 |
+
|
23 |
+
"""
|
24 |
+
Sklearn Libraries
|
25 |
+
"""
|
26 |
+
from sklearn.metrics import f1_score
|
27 |
+
from sklearn.model_selection import train_test_split
|
28 |
+
|
29 |
+
"""
|
30 |
+
Transformer Libraries
|
31 |
+
"""
|
32 |
+
!pip install transformers
|
33 |
+
from transformers import BertTokenizer, AutoModelForSequenceClassification, AdamW, get_linear_schedule_with_warmup
|
34 |
+
|
35 |
+
"""
|
36 |
+
Pytorch Libraries
|
37 |
+
"""
|
38 |
+
import torch
|
39 |
+
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
|
40 |
+
|
41 |
+
esg_data = pd.read_csv("/content/drive/MyDrive/kpmg_personal/concat.csv",
|
42 |
+
encoding='utf-8')
|
43 |
+
|
44 |
+
esg_data
|
45 |
+
|
46 |
+
plt.figure(figsize = (15,8))
|
47 |
+
|
48 |
+
sns.set(style='darkgrid')
|
49 |
+
|
50 |
+
# Increase information on the figure
|
51 |
+
sns.set(font_scale=1.3)
|
52 |
+
sns.countplot(x='category', data = esg_data)
|
53 |
+
plt.title('ESG Category Distribution')
|
54 |
+
plt.xlabel('E,S,G,N')
|
55 |
+
plt.ylabel('Number of Contents')
|
56 |
+
|
57 |
+
def show_random_contents(total_number, df):
|
58 |
+
|
59 |
+
# Get the random number of reviews
|
60 |
+
n_contents = df.sample(total_number)
|
61 |
+
|
62 |
+
# Print each one of the reviews
|
63 |
+
for val in list(n_contents.index):
|
64 |
+
print("Contents #°{}".format(val))
|
65 |
+
print(" - Category: {}".format(df.iloc[val]["category"]))
|
66 |
+
print(" - Contents: {}".format(df.iloc[val]["contents"]))
|
67 |
+
print("")
|
68 |
+
|
69 |
+
# Show 5 random headlines
|
70 |
+
show_random_contents(5, esg_data)
|
71 |
+
|
72 |
+
def encode_categories_values(df):
|
73 |
+
|
74 |
+
possible_categories = df.category.unique()
|
75 |
+
category_dict = {}
|
76 |
+
|
77 |
+
for index, possible_category in enumerate(possible_categories):
|
78 |
+
category_dict[possible_category] = index
|
79 |
+
|
80 |
+
# Encode all the sentiment values
|
81 |
+
df['label'] = df.category.replace(category_dict)
|
82 |
+
|
83 |
+
return df, category_dict
|
84 |
+
|
85 |
+
# Perform the encoding task on the data set
|
86 |
+
esg_data, category_dict = encode_categories_values(esg_data)
|
87 |
+
|
88 |
+
X_train,X_val, y_train, y_val = train_test_split(esg_data.index.values,
|
89 |
+
esg_data.label.values,
|
90 |
+
test_size = 0.15,
|
91 |
+
random_state = 2022,
|
92 |
+
stratify = esg_data.label.values)
|
93 |
+
|
94 |
+
esg_data.loc[X_train, 'data_type'] = 'train'
|
95 |
+
esg_data.loc[X_val, 'data_type'] = 'val'
|
96 |
+
|
97 |
+
# Vizualiez the number of sentiment occurence on each type of data
|
98 |
+
esg_data.groupby(['category', 'label', 'data_type']).count()
|
99 |
+
|
100 |
+
# Get the FinBERT Tokenizer
|
101 |
+
finbert_tokenizer = BertTokenizer.from_pretrained('snunlp/KR-FinBert-SC',
|
102 |
+
do_lower_case=True)
|
103 |
+
|
104 |
+
def get_contents_len(df):
|
105 |
+
|
106 |
+
contents_sequence_lengths = []
|
107 |
+
|
108 |
+
print("Encoding in progress...")
|
109 |
+
for content in tqdm(df.contents):
|
110 |
+
encoded_content = finbert_tokenizer.encode(content,
|
111 |
+
add_special_tokens = True)
|
112 |
+
|
113 |
+
# record the length of the encoded review
|
114 |
+
contents_sequence_lengths.append(len(encoded_content))
|
115 |
+
print("End of Task.")
|
116 |
+
|
117 |
+
return contents_sequence_lengths
|
118 |
+
|
119 |
+
def show_contents_distribution(sequence_lengths, figsize = (15,8)):
|
120 |
+
|
121 |
+
# Get the percentage of reviews with length > 512
|
122 |
+
len_512_plus = [rev_len for rev_len in sequence_lengths if rev_len > 512]
|
123 |
+
percent = (len(len_512_plus)/len(sequence_lengths))*100
|
124 |
+
|
125 |
+
print("Maximum Sequence Length is {}".format(max(sequence_lengths)))
|
126 |
+
|
127 |
+
# Configure the plot size
|
128 |
+
plt.figure(figsize = figsize)
|
129 |
+
|
130 |
+
sns.set(style='darkgrid')
|
131 |
+
|
132 |
+
# Increase information on the figure
|
133 |
+
sns.set(font_scale=1.3)
|
134 |
+
|
135 |
+
# Plot the result
|
136 |
+
sns.distplot(sequence_lengths, kde = False, rug = False)
|
137 |
+
plt.title('Contents Lengths Distribution')
|
138 |
+
plt.xlabel('Contents Length')
|
139 |
+
plt.ylabel('Number of Contents')
|
140 |
+
|
141 |
+
show_contents_distribution(get_contents_len(esg_data))
|
142 |
+
|
143 |
+
# Encode the Training and Validation Data
|
144 |
+
encoded_data_train = finbert_tokenizer.batch_encode_plus(
|
145 |
+
esg_data[esg_data.data_type=='train'].contents.values,
|
146 |
+
return_tensors='pt',
|
147 |
+
add_special_tokens=True,
|
148 |
+
return_attention_mask=True,
|
149 |
+
pad_to_max_length=True,
|
150 |
+
max_length=200 # the maximum lenght observed in the headlines
|
151 |
+
)
|
152 |
+
|
153 |
+
encoded_data_val = finbert_tokenizer.batch_encode_plus(
|
154 |
+
esg_data[esg_data.data_type=='val'].contents.values,
|
155 |
+
return_tensors='pt',
|
156 |
+
add_special_tokens=True,
|
157 |
+
return_attention_mask=True,
|
158 |
+
pad_to_max_length=True,
|
159 |
+
max_length=200 # the maximum length observed in the headlines
|
160 |
+
)
|
161 |
+
|
162 |
+
|
163 |
+
input_ids_train = encoded_data_train['input_ids']
|
164 |
+
attention_masks_train = encoded_data_train['attention_mask']
|
165 |
+
labels_train = torch.tensor(esg_data[esg_data.data_type=='train'].label.values)
|
166 |
+
|
167 |
+
input_ids_val = encoded_data_val['input_ids']
|
168 |
+
attention_masks_val = encoded_data_val['attention_mask']
|
169 |
+
sentiments_val = torch.tensor(esg_data[esg_data.data_type=='val'].label.values)
|
170 |
+
|
171 |
+
|
172 |
+
dataset_train = TensorDataset(input_ids_train, attention_masks_train, labels_train)
|
173 |
+
dataset_val = TensorDataset(input_ids_val, attention_masks_val, sentiments_val)
|
174 |
+
|
175 |
+
model = AutoModelForSequenceClassification.from_pretrained("snunlp/KR-FinBert-SC",
|
176 |
+
num_labels=len(category_dict),
|
177 |
+
output_attentions=False,
|
178 |
+
output_hidden_states=False,
|
179 |
+
ignore_mismatched_sizes=True)
|
180 |
+
|
181 |
+
batch_size = 5
|
182 |
+
|
183 |
+
dataloader_train = DataLoader(dataset_train,
|
184 |
+
sampler=RandomSampler(dataset_train),
|
185 |
+
batch_size=batch_size)
|
186 |
+
|
187 |
+
dataloader_validation = DataLoader(dataset_val,
|
188 |
+
sampler=SequentialSampler(dataset_val),
|
189 |
+
batch_size=batch_size)
|
190 |
+
|
191 |
+
optimizer = AdamW(model.parameters(),
|
192 |
+
lr=1e-5,
|
193 |
+
eps=1e-8)
|
194 |
+
|
195 |
+
epochs = 5
|
196 |
+
|
197 |
+
scheduler = get_linear_schedule_with_warmup(optimizer,
|
198 |
+
num_warmup_steps=0,
|
199 |
+
num_training_steps=len(dataloader_train)*epochs)
|
200 |
+
|
201 |
+
def f1_score_func(preds, labels):
|
202 |
+
preds_flat = np.argmax(preds, axis=1).flatten()
|
203 |
+
labels_flat = labels.flatten()
|
204 |
+
return f1_score(labels_flat, preds_flat, average='weighted')
|
205 |
+
|
206 |
+
def accuracy_per_class(preds, labels):
|
207 |
+
label_dict_inverse = {v: k for k, v in category_dict.items()}
|
208 |
+
|
209 |
+
preds_flat = np.argmax(preds, axis=1).flatten()
|
210 |
+
labels_flat = labels.flatten()
|
211 |
+
|
212 |
+
for label in np.unique(labels_flat):
|
213 |
+
y_preds = preds_flat[labels_flat==label]
|
214 |
+
y_true = labels_flat[labels_flat==label]
|
215 |
+
print(f'Class: {label_dict_inverse[label]}')
|
216 |
+
print(f'Accuracy: {len(y_preds[y_preds==label])}/{len(y_true)}\n')
|
217 |
+
|
218 |
+
seed_val = 2022
|
219 |
+
random.seed(seed_val)
|
220 |
+
np.random.seed(seed_val)
|
221 |
+
torch.manual_seed(seed_val)
|
222 |
+
torch.cuda.manual_seed_all(seed_val)
|
223 |
+
|
224 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
225 |
+
model.to(device)
|
226 |
+
|
227 |
+
|
228 |
+
def evaluate(dataloader_val):
|
229 |
+
|
230 |
+
model.eval()
|
231 |
+
|
232 |
+
loss_val_total = 0
|
233 |
+
predictions, true_vals = [], []
|
234 |
+
|
235 |
+
for batch in dataloader_val:
|
236 |
+
|
237 |
+
batch = tuple(b.to(device) for b in batch)
|
238 |
+
|
239 |
+
inputs = {'input_ids': batch[0],
|
240 |
+
'attention_mask': batch[1],
|
241 |
+
'labels': batch[2],
|
242 |
+
}
|
243 |
+
|
244 |
+
with torch.no_grad():
|
245 |
+
outputs = model(**inputs)
|
246 |
+
|
247 |
+
loss = outputs[0]
|
248 |
+
logits = outputs[1]
|
249 |
+
loss_val_total += loss.item()
|
250 |
+
|
251 |
+
logits = logits.detach().cpu().numpy()
|
252 |
+
label_ids = inputs['labels'].cpu().numpy()
|
253 |
+
predictions.append(logits)
|
254 |
+
true_vals.append(label_ids)
|
255 |
+
|
256 |
+
loss_val_avg = loss_val_total/len(dataloader_val)
|
257 |
+
|
258 |
+
predictions = np.concatenate(predictions, axis=0)
|
259 |
+
true_vals = np.concatenate(true_vals, axis=0)
|
260 |
+
|
261 |
+
return loss_val_avg, predictions, true_vals
|
262 |
+
|
263 |
+
|
264 |
+
for epoch in tqdm(range(1, epochs+1)):
|
265 |
+
|
266 |
+
model.train()
|
267 |
+
|
268 |
+
loss_train_total = 0
|
269 |
+
|
270 |
+
progress_bar = tqdm(dataloader_train, desc='Epoch {:1d}'.format(epoch), leave=False, disable=False)
|
271 |
+
for batch in progress_bar:
|
272 |
+
|
273 |
+
model.zero_grad()
|
274 |
+
|
275 |
+
batch = tuple(b.to(device) for b in batch)
|
276 |
+
|
277 |
+
inputs = {'input_ids': batch[0],
|
278 |
+
'attention_mask': batch[1],
|
279 |
+
'labels': batch[2],
|
280 |
+
}
|
281 |
+
|
282 |
+
outputs = model(**inputs)
|
283 |
+
|
284 |
+
loss = outputs[0]
|
285 |
+
loss_train_total += loss.item()
|
286 |
+
loss.backward()
|
287 |
+
|
288 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
289 |
+
|
290 |
+
optimizer.step()
|
291 |
+
scheduler.step()
|
292 |
+
|
293 |
+
progress_bar.set_postfix({'training_loss': '{:.3f}'.format(loss.item()/len(batch))})
|
294 |
+
|
295 |
+
torch.save(model.state_dict(), f'finetuned_finBERT_epoch_{epoch}.model')
|
296 |
+
|
297 |
+
tqdm.write(f'\nEpoch {epoch}')
|
298 |
+
|
299 |
+
loss_train_avg = loss_train_total/len(dataloader_train)
|
300 |
+
tqdm.write(f'Training loss: {loss_train_avg}')
|
301 |
+
|
302 |
+
val_loss, predictions, true_vals = evaluate(dataloader_validation)
|
303 |
+
val_f1 = f1_score_func(predictions, true_vals)
|
304 |
+
tqdm.write(f'Validation loss: {val_loss}')
|
305 |
+
tqdm.write(f'F1 Score (Weighted): {val_f1}')
|
306 |
+
|
307 |
+
model = AutoModelForSequenceClassification.from_pretrained("snunlp/KR-FinBert-SC",
|
308 |
+
num_labels=len(category_dict),
|
309 |
+
output_attentions=False,
|
310 |
+
output_hidden_states=False,
|
311 |
+
ignore_mismatched_sizes=True)
|
312 |
+
|
313 |
+
model.to(device)
|
314 |
+
|
315 |
+
model.load_state_dict(torch.load('finetuned_finBERT_epoch_4.model',
|
316 |
+
map_location=torch.device('cpu')))
|
317 |
+
|
318 |
+
_, predictions, true_vals = evaluate(dataloader_validation)
|
319 |
+
|
320 |
+
accuracy_per_class(predictions, true_vals)
|
321 |
+
|
322 |
+
# max_length = 200
|
323 |
+
|
324 |
+
|