Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1_cVBwxsa7LcHzjzCcS4l1ds0wxNPQrjm """ from google.colab import drive drive.mount('/content/drive') import pandas as pd import numpy as np import warnings warnings.filterwarnings('ignore') # to avoid warnings import random import pandas as pd from tqdm import tqdm import seaborn as sns import matplotlib.pyplot as plt """ Sklearn Libraries """ from sklearn.metrics import f1_score from sklearn.model_selection import train_test_split """ Transformer Libraries """ !pip install transformers from transformers import BertTokenizer, AutoModelForSequenceClassification, AdamW, get_linear_schedule_with_warmup """ Pytorch Libraries """ import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset esg_data = pd.read_csv("/content/drive/MyDrive/kpmg_personal/concat.csv", encoding='utf-8') esg_data plt.figure(figsize = (15,8)) sns.set(style='darkgrid') # Increase information on the figure sns.set(font_scale=1.3) sns.countplot(x='category', data = esg_data) plt.title('ESG Category Distribution') plt.xlabel('E,S,G,N') plt.ylabel('Number of Contents') def show_random_contents(total_number, df): # Get the random number of reviews n_contents = df.sample(total_number) # Print each one of the reviews for val in list(n_contents.index): print("Contents #°{}".format(val)) print(" - Category: {}".format(df.iloc[val]["category"])) print(" - Contents: {}".format(df.iloc[val]["contents"])) print("") # Show 5 random headlines show_random_contents(5, esg_data) def encode_categories_values(df): possible_categories = df.category.unique() category_dict = {} for index, possible_category in enumerate(possible_categories): category_dict[possible_category] = index # Encode all the sentiment values df['label'] = df.category.replace(category_dict) return df, category_dict # Perform the encoding task on the data set esg_data, category_dict = encode_categories_values(esg_data) X_train,X_val, y_train, y_val = train_test_split(esg_data.index.values, esg_data.label.values, test_size = 0.15, random_state = 2022, stratify = esg_data.label.values) esg_data.loc[X_train, 'data_type'] = 'train' esg_data.loc[X_val, 'data_type'] = 'val' # Vizualiez the number of sentiment occurence on each type of data esg_data.groupby(['category', 'label', 'data_type']).count() # Get the FinBERT Tokenizer finbert_tokenizer = BertTokenizer.from_pretrained('snunlp/KR-FinBert-SC', do_lower_case=True) def get_contents_len(df): contents_sequence_lengths = [] print("Encoding in progress...") for content in tqdm(df.contents): encoded_content = finbert_tokenizer.encode(content, add_special_tokens = True) # record the length of the encoded review contents_sequence_lengths.append(len(encoded_content)) print("End of Task.") return contents_sequence_lengths def show_contents_distribution(sequence_lengths, figsize = (15,8)): # Get the percentage of reviews with length > 512 len_512_plus = [rev_len for rev_len in sequence_lengths if rev_len > 512] percent = (len(len_512_plus)/len(sequence_lengths))*100 print("Maximum Sequence Length is {}".format(max(sequence_lengths))) # Configure the plot size plt.figure(figsize = figsize) sns.set(style='darkgrid') # Increase information on the figure sns.set(font_scale=1.3) # Plot the result sns.distplot(sequence_lengths, kde = False, rug = False) plt.title('Contents Lengths Distribution') plt.xlabel('Contents Length') plt.ylabel('Number of Contents') show_contents_distribution(get_contents_len(esg_data)) # Encode the Training and Validation Data encoded_data_train = finbert_tokenizer.batch_encode_plus( esg_data[esg_data.data_type=='train'].contents.values, return_tensors='pt', add_special_tokens=True, return_attention_mask=True, pad_to_max_length=True, max_length=200 # the maximum lenght observed in the headlines ) encoded_data_val = finbert_tokenizer.batch_encode_plus( esg_data[esg_data.data_type=='val'].contents.values, return_tensors='pt', add_special_tokens=True, return_attention_mask=True, pad_to_max_length=True, max_length=200 # the maximum length observed in the headlines ) input_ids_train = encoded_data_train['input_ids'] attention_masks_train = encoded_data_train['attention_mask'] labels_train = torch.tensor(esg_data[esg_data.data_type=='train'].label.values) input_ids_val = encoded_data_val['input_ids'] attention_masks_val = encoded_data_val['attention_mask'] sentiments_val = torch.tensor(esg_data[esg_data.data_type=='val'].label.values) dataset_train = TensorDataset(input_ids_train, attention_masks_train, labels_train) dataset_val = TensorDataset(input_ids_val, attention_masks_val, sentiments_val) model = AutoModelForSequenceClassification.from_pretrained("snunlp/KR-FinBert-SC", num_labels=len(category_dict), output_attentions=False, output_hidden_states=False, ignore_mismatched_sizes=True) batch_size = 5 dataloader_train = DataLoader(dataset_train, sampler=RandomSampler(dataset_train), batch_size=batch_size) dataloader_validation = DataLoader(dataset_val, sampler=SequentialSampler(dataset_val), batch_size=batch_size) optimizer = AdamW(model.parameters(), lr=1e-5, eps=1e-8) epochs = 5 scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=len(dataloader_train)*epochs) def f1_score_func(preds, labels): preds_flat = np.argmax(preds, axis=1).flatten() labels_flat = labels.flatten() return f1_score(labels_flat, preds_flat, average='weighted') def accuracy_per_class(preds, labels): label_dict_inverse = {v: k for k, v in category_dict.items()} preds_flat = np.argmax(preds, axis=1).flatten() labels_flat = labels.flatten() for label in np.unique(labels_flat): y_preds = preds_flat[labels_flat==label] y_true = labels_flat[labels_flat==label] print(f'Class: {label_dict_inverse[label]}') print(f'Accuracy: {len(y_preds[y_preds==label])}/{len(y_true)}\n') seed_val = 2022 random.seed(seed_val) np.random.seed(seed_val) torch.manual_seed(seed_val) torch.cuda.manual_seed_all(seed_val) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) def evaluate(dataloader_val): model.eval() loss_val_total = 0 predictions, true_vals = [], [] for batch in dataloader_val: batch = tuple(b.to(device) for b in batch) inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[2], } with torch.no_grad(): outputs = model(**inputs) loss = outputs[0] logits = outputs[1] loss_val_total += loss.item() logits = logits.detach().cpu().numpy() label_ids = inputs['labels'].cpu().numpy() predictions.append(logits) true_vals.append(label_ids) loss_val_avg = loss_val_total/len(dataloader_val) predictions = np.concatenate(predictions, axis=0) true_vals = np.concatenate(true_vals, axis=0) return loss_val_avg, predictions, true_vals for epoch in tqdm(range(1, epochs+1)): model.train() loss_train_total = 0 progress_bar = tqdm(dataloader_train, desc='Epoch {:1d}'.format(epoch), leave=False, disable=False) for batch in progress_bar: model.zero_grad() batch = tuple(b.to(device) for b in batch) inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[2], } outputs = model(**inputs) loss = outputs[0] loss_train_total += loss.item() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() scheduler.step() progress_bar.set_postfix({'training_loss': '{:.3f}'.format(loss.item()/len(batch))}) torch.save(model.state_dict(), f'finetuned_finBERT_epoch_{epoch}.model') tqdm.write(f'\nEpoch {epoch}') loss_train_avg = loss_train_total/len(dataloader_train) tqdm.write(f'Training loss: {loss_train_avg}') val_loss, predictions, true_vals = evaluate(dataloader_validation) val_f1 = f1_score_func(predictions, true_vals) tqdm.write(f'Validation loss: {val_loss}') tqdm.write(f'F1 Score (Weighted): {val_f1}') model = AutoModelForSequenceClassification.from_pretrained("snunlp/KR-FinBert-SC", num_labels=len(category_dict), output_attentions=False, output_hidden_states=False, ignore_mismatched_sizes=True) model.to(device) model.load_state_dict(torch.load('finetuned_finBERT_epoch_4.model', map_location=torch.device('cpu'))) _, predictions, true_vals = evaluate(dataloader_validation) accuracy_per_class(predictions, true_vals) # max_length = 200