Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,49 +1,59 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
import torch
|
4 |
-
from
|
|
|
|
|
5 |
|
6 |
-
|
7 |
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
-
#
|
12 |
-
|
|
|
|
|
|
|
13 |
|
14 |
-
# load text-to-speech checkpoint and speaker embeddings
|
15 |
-
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
|
17 |
-
model
|
18 |
-
|
|
|
19 |
|
20 |
-
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
-
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
27 |
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
return speech.cpu()
|
33 |
|
34 |
|
|
|
35 |
def speech_to_speech_translation(audio):
|
36 |
translated_text = translate(audio)
|
37 |
synthesised_speech = synthesise(translated_text)
|
38 |
-
synthesised_speech = (
|
|
|
39 |
return 16000, synthesised_speech
|
40 |
|
41 |
|
|
|
42 |
title = "Cascaded STST"
|
43 |
description = """
|
44 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in
|
45 |
-
[
|
46 |
-
|
47 |

|
48 |
"""
|
49 |
|
@@ -69,4 +79,4 @@ file_translate = gr.Interface(
|
|
69 |
with demo:
|
70 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
71 |
|
72 |
-
demo.launch()
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
from transformers import pipeline, VitsModel, VitsTokenizer
|
3 |
+
import numpy as np
|
4 |
+
import gradio as gr
|
5 |
|
6 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
7 |
|
8 |
+
# Load Whisper-base
|
9 |
+
pipe = pipeline("automatic-speech-recognition",
|
10 |
+
model="openai/whisper-base",
|
11 |
+
device=device
|
12 |
+
)
|
13 |
|
|
|
14 |
|
15 |
+
# Define a function to translate an audio, in French here
|
16 |
+
def translate(audio):
|
17 |
+
outputs = pipe(audio, max_new_tokens=256,
|
18 |
+
generate_kwargs={"task": "transcribe", "language": "fr"})
|
19 |
+
return outputs["text"]
|
20 |
|
|
|
|
|
21 |
|
22 |
+
# Load the model checkpoint and tokenizer
|
23 |
+
model = VitsModel.from_pretrained("Matthijs/mms-tts-fra")
|
24 |
+
tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-fra")
|
25 |
|
|
|
|
|
26 |
|
27 |
+
# Define function to generate the waveform output
|
28 |
+
def synthesise(text):
|
29 |
+
inputs = tokenizer(text, return_tensors="pt")
|
30 |
+
input_ids = inputs["input_ids"]
|
31 |
|
32 |
+
with torch.no_grad():
|
33 |
+
outputs = model(input_ids)
|
34 |
+
|
35 |
+
return outputs.audio[0]
|
36 |
|
37 |
|
38 |
+
# Define global variables
|
39 |
+
target_dtype = np.int16 # format expected by Gradio
|
40 |
+
max_range = np.iinfo(target_dtype).max
|
|
|
41 |
|
42 |
|
43 |
+
# Define the pipeline
|
44 |
def speech_to_speech_translation(audio):
|
45 |
translated_text = translate(audio)
|
46 |
synthesised_speech = synthesise(translated_text)
|
47 |
+
synthesised_speech = (
|
48 |
+
synthesised_speech.numpy() * max_range).astype(target_dtype)
|
49 |
return 16000, synthesised_speech
|
50 |
|
51 |
|
52 |
+
# Define the title etc
|
53 |
title = "Cascaded STST"
|
54 |
description = """
|
55 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in French. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Facebook's
|
56 |
+
[MMS TTS](https://huggingface.co/facebook/mms-tts) model, finetuned by [Matthijs](https://huggingface.co/Matthijs), for text-to-speech:
|
|
|
57 |

|
58 |
"""
|
59 |
|
|
|
79 |
with demo:
|
80 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
81 |
|
82 |
+
demo.launch()
|