import torch import numpy as np import cv2 import gradio as gr from segment_anything import sam_model_registry, SamAutomaticMaskGenerator from PIL import Image # 加载 Segment Anything 模型 sam = sam_model_registry["vit_h"](checkpoint="sam_vit_h_4b8939.pth").to("cuda") mask_generator = SamAutomaticMaskGenerator(sam) def segment(image): image = np.array(image) masks = mask_generator.generate(image) largest_mask = max(masks, key=lambda x: x['area'])['segmentation'] binary_mask = np.where(largest_mask, 255, 0).astype(np.uint8) return Image.fromarray(binary_mask) # Gradio API demo = gr.Interface(fn=segment, inputs="image", outputs="image") demo.launch()