medical-translation-zh2en / translation_model.py
6yuru99's picture
Create app.py / translation_model.py
8542393 verified
raw
history blame
1.23 kB
# translation_model.py
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
class Translator:
src_lang, tgt_lang = "", ""
def set_lang_codes(self, direction):
if direction == "English -> Chinese":
self.src_lang = "eng_Latn"
self.tgt_lang = "zho_Hant"
elif direction == "Chinese -> English":
self.src_lang = "zho_Hant"
self.tgt_lang = "eng_Latn"
else:
raise ValueError("Unsupported translation direction")
def __init__(self, model_name='6yuru99/medical-nllb-200-en2zh_hant'):
self.tokenizer = AutoTokenizer.from_pretrained(model_name, src_lang=self.src_lang)
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
def translate(self, text, direction):
self.set_lang_codes(direction)
inputs = self.tokenizer(text, return_tensors="pt")
translated_tokens = self.model.generate(**inputs, forced_bos_token_id=self.tokenizer.convert_tokens_to_ids(self.tgt_lang), max_length=1024)
outputs = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
return outputs
translator = Translator()