Spaces:
Runtime error
Runtime error
import gradio as gr | |
from attack import Attacker | |
import argparse | |
def do_attack(img, eps, step_size, steps, progress=gr.Progress()): | |
args=argparse.Namespace() | |
args.out_dir='./' | |
args.target='auto' | |
args.eps=eps | |
args.step_size=step_size | |
args.steps=steps | |
args.test_atk=False | |
step = progress.tqdm(range(steps)) | |
def pdg_prog(ori_images, images, labels): | |
step.update(1) | |
attacker = Attacker(args, pgd_callback=pdg_prog) | |
atk_img, noise = attacker.attack_(img) | |
attacker.save_image(img, noise, 'out.png') | |
return 'out.png' | |
with gr.Blocks(title="Anime AI Detect Fucker Demo", theme="dark") as demo: | |
gr.HTML('<a href="https://github.com/7eu7d7/anime-ai-detect-fucker">github repo</a>') | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
eps = gr.Slider(label="eps (Noise intensity)", minimum=1, maximum=16, step=1, value=1) | |
step_size = gr.Slider(label="Noise step size", minimum=0.001, maximum=16, step=0.001, value=0.136) | |
with gr.Row(): | |
steps = gr.Slider(label="step count", minimum=1, maximum=100, step=1, value=20) | |
model_name = gr.Dropdown(label="attack target", | |
choices=["auto", "human", "ai"], | |
interactive=True, | |
value="auto", show_label=True) | |
input_image = gr.Image(label="Clean Image", type="pil") | |
atk_btn = gr.Button("Attack") | |
with gr.Column(): | |
output_image = gr.Image(label="Attacked Image") | |
atk_btn.click(fn=do_attack, | |
inputs=[input_image, eps, step_size, steps], | |
outputs=output_image) | |
demo.launch() |