import gradio as gr | |
import torch | |
import clip | |
from PIL import Image | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model, preprocess = clip.load("ViT-B/32", device=device) | |
def clip(image, text): | |
return "UWU" | |
# image = preprocess(image).unsqueeze(0).to(device) | |
# text = clip.tokenize([text]).to(device) | |
# with torch.no_grad(): | |
# image_features = model.encode_image(image) | |
# text_features = model.encode_text(text) | |
# logits_per_image, logits_per_text = model(image, text) | |
# probs = logits_per_image.softmax(dim=-1).cpu().numpy() | |
# return probs[0] | |
demo = gr.Interface(fn=clip, inputs=["text", "image"], outputs="text") | |
demo.launch() |