Update app.py
Browse files
app.py
CHANGED
@@ -2,24 +2,31 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
import clip
|
4 |
from PIL import Image
|
|
|
5 |
|
6 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
7 |
model, preprocess = clip.load("ViT-B/32", device=device)
|
8 |
|
9 |
-
def
|
|
|
|
|
10 |
|
11 |
-
|
12 |
image = preprocess(image).unsqueeze(0).to(device)
|
13 |
-
|
|
|
|
|
14 |
|
15 |
with torch.no_grad():
|
|
|
16 |
image_features = model.encode_image(image)
|
17 |
-
text_features = model.encode_text(
|
18 |
|
19 |
-
|
|
|
20 |
probs = logits_per_image.softmax(dim=-1).cpu().numpy()
|
21 |
|
22 |
return probs
|
23 |
|
24 |
-
demo = gr.Interface(fn=
|
25 |
-
demo.launch()
|
|
|
2 |
import torch
|
3 |
import clip
|
4 |
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
model, preprocess = clip.load("ViT-B/32", device=device)
|
9 |
|
10 |
+
def process_image_and_text(image, text):
|
11 |
+
# Ensure text is a NumPy array and convert it to a list of strings
|
12 |
+
text_list = text.tolist()
|
13 |
|
14 |
+
# Preprocess the image
|
15 |
image = preprocess(image).unsqueeze(0).to(device)
|
16 |
+
|
17 |
+
# Tokenize the text
|
18 |
+
text_tokens = clip.tokenize(text_list).to(device)
|
19 |
|
20 |
with torch.no_grad():
|
21 |
+
# Encode image and text
|
22 |
image_features = model.encode_image(image)
|
23 |
+
text_features = model.encode_text(text_tokens)
|
24 |
|
25 |
+
# Compute logits and probabilities
|
26 |
+
logits_per_image, logits_per_text = model(image, text_tokens)
|
27 |
probs = logits_per_image.softmax(dim=-1).cpu().numpy()
|
28 |
|
29 |
return probs
|
30 |
|
31 |
+
demo = gr.Interface(fn=process_image_and_text, inputs=[gr.inputs.Image(type="pil"), gr.inputs.Textbox()], outputs="text")
|
32 |
+
demo.launch()
|