import gradio as gr import torch import clip from PIL import Image device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = clip.load("ViT-B/32", device=device) def clip(image, text): image = preprocess(image).unsqueeze(0).to(device) text = clip.tokenize([text]).to(device) with torch.no_grad(): image_features = model.encode_image(image) text_features = model.encode_text(text) logits_per_image, logits_per_text = model(image, text) probs = logits_per_image.softmax(dim=-1).cpu().numpy() return probs[0] demo = gr.Interface(fn=clip, inputs=["text", "image"], outputs="text") demo.launch()