import gradio as gr import torch import clip from PIL import Image import numpy as np device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = clip.load("ViT-B/32", device=device) def process_image_and_text(image, text): # Ensure text is a NumPy array and convert it to a list of strings text_list = text.tolist() # Preprocess the image image = preprocess(image).unsqueeze(0).to(device) # Tokenize the text text_tokens = clip.tokenize(text_list).to(device) with torch.no_grad(): # Encode image and text image_features = model.encode_image(image) text_features = model.encode_text(text_tokens) # Compute logits and probabilities logits_per_image, logits_per_text = model(image, text_tokens) probs = logits_per_image.softmax(dim=-1).cpu().numpy() return probs demo = gr.Interface(fn=process_image_and_text, inputs=[gr.inputs.Image(type="pil"), gr.inputs.Textbox()], outputs="text") demo.launch()