import gradio as gr import torch import clip from PIL import Image device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = clip.load("ViT-B/32", device=device) def process_image_and_text(image, text): text = text.split(",") image = Image.fromarray(image) image = preprocess(image).unsqueeze(0).to(device) text_tokens = clip.tokenize(text).to(device) with torch.no_grad(): image_features = model.encode_image(image) print(image_features.size()) text_features = model.encode_text(text_tokens) logits_per_image, logits_per_text = model(image, text_tokens) probs = logits_per_image.softmax(dim=-1) return probs.cpu().numpy()[0] demo = gr.Interface(fn=process_image_and_text, inputs=['image', 'text'], outputs="text") demo.launch()