|
import torch |
|
from torch import nn |
|
from warnings import filterwarnings |
|
from torchvision.transforms import ToTensor, Resize, Normalize, Compose |
|
|
|
filterwarnings("ignore") |
|
|
|
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
KERNEL_SIZE = (3,3) |
|
|
|
class VGGFACE(nn.Module): |
|
def __init__(self, *args, **kwargs) -> None: |
|
super().__init__(*args, **kwargs) |
|
self.conv1_1 = nn.Conv2d(3, 64, KERNEL_SIZE, 1, 1) |
|
self.conv1_2 = nn.Conv2d(64, 64, KERNEL_SIZE, 1, 1) |
|
|
|
self.conv2_1 = nn.Conv2d(64, 128, KERNEL_SIZE, 1, 1) |
|
self.conv2_2 = nn.Conv2d(128, 128, KERNEL_SIZE, 1, 1) |
|
|
|
self.conv3_1 = nn.Conv2d(128, 256, KERNEL_SIZE, 1, 1) |
|
self.conv3_2 = nn.Conv2d(256, 256, KERNEL_SIZE, 1, 1) |
|
self.conv3_3 = nn.Conv2d(256, 256, KERNEL_SIZE, 1, 1) |
|
|
|
self.conv4_1 = nn.Conv2d(256, 512, KERNEL_SIZE, 1, 1) |
|
self.conv4_2 = nn.Conv2d(512, 512, KERNEL_SIZE, 1, 1) |
|
self.conv4_3 = nn.Conv2d(512, 512, KERNEL_SIZE, 1, 1) |
|
|
|
self.conv5_1 = nn.Conv2d(512, 512, KERNEL_SIZE, 1, 1) |
|
self.conv5_2 = nn.Conv2d(512, 512, KERNEL_SIZE, 1, 1) |
|
self.conv5_3 = nn.Conv2d(512, 512, KERNEL_SIZE, 1, 1) |
|
|
|
self.fc6 = nn.Linear(49*512, 4096) |
|
self.fc7 = nn.Linear(4096, 4096) |
|
self.fc8 = nn.Linear(4096, 2622) |
|
self.relu = nn.ReLU() |
|
self.maxpool = nn.MaxPool2d(2) |
|
|
|
self._features = [ |
|
self.conv1_1, self.relu, |
|
self.conv1_2, self.relu, |
|
self.maxpool, |
|
self.conv2_1, self.relu, |
|
self.conv2_2, self.relu, |
|
self.maxpool, |
|
self.conv3_1, self.relu, |
|
self.conv3_2, self.relu, |
|
self.conv3_3, self.relu, |
|
self.maxpool, |
|
self.conv4_1, self.relu, |
|
self.conv4_2, self.relu, |
|
self.conv4_3, self.relu, |
|
self.maxpool, |
|
self.conv5_1, self.relu, |
|
self.conv5_2, self.relu, |
|
self.conv5_3, self.relu, |
|
self.maxpool, |
|
nn.Flatten(start_dim=0) |
|
] |
|
|
|
self._classifier = [ |
|
self.fc6, self.relu, |
|
self.fc7, self.relu, |
|
self.fc8 |
|
] |
|
|
|
self._embedder = [ |
|
self.conv1_1, self.relu, |
|
self.conv1_2, self.relu, |
|
self.maxpool, |
|
self.conv2_1, self.relu, |
|
self.conv2_2, self.relu, |
|
self.maxpool, |
|
self.conv3_1, self.relu, |
|
self.conv3_2, self.relu, |
|
self.conv3_3, self.relu, |
|
self.maxpool, |
|
self.conv4_1, self.relu, |
|
self.conv4_2, self.relu, |
|
self.conv4_3, self.relu, |
|
self.maxpool, |
|
self.conv5_1, self.relu, |
|
self.conv5_2, self.relu, |
|
self.conv5_3, self.relu, |
|
self.maxpool, |
|
nn.Flatten(start_dim=0), |
|
self.fc6, |
|
] |
|
self.transform = Compose([ToTensor() ,Resize((224, 224)), Normalize(mean=(93.59396362304688/255, 104.76238250732422/255, 129.186279296875/255), std=(1, 1, 1))]) |
|
def features(self, x): |
|
x = self.transform(x) |
|
x = x.to(DEVICE) |
|
for layer in self._features: |
|
x = layer(x) |
|
return x |
|
def classifier(self, x): |
|
for layer in self._classifier: |
|
x = layer(x) |
|
return x |
|
def embedder(self, x): |
|
x = self.transform(x) |
|
x = x.to(DEVICE) |
|
for layer in self._embedder: |
|
x = layer(x) |
|
return x |
|
def forward(self, x:torch.Tensor): |
|
x = self.features(x) |
|
return self.classifier(x) |
|
def embeddings(self, x:torch.Tensor): |
|
return self.embedder(x).cpu().flatten().detach().numpy() |
|
__call__ = embeddings |
|
|
|
MODEL_FACE = VGGFACE() |
|
MODEL_FACE.load_state_dict(torch.load("models/vgg_face_dag.pth"), strict=True) |
|
MODEL_FACE.to(DEVICE) |
|
|
|
if __name__ == "__main__": |
|
print(MODEL_FACE.state_dict().keys()) |