|
import cv2 |
|
import numpy as np |
|
|
|
|
|
X1_OFFSET, X2_OFFSET = 0,0 |
|
Y1_OFFSET, Y2_OFFSET = 0,0 |
|
|
|
class YOLO: |
|
def __init__(self): |
|
self.net = cv2.dnn.readNet("models/yolov3-tiny.weights", "configs/yolov3-tiny.cfg") |
|
self.layer_names = self.net.getLayerNames() |
|
self.output_layers = [self.layer_names[i - 1] for i in self.net.getUnconnectedOutLayers()] |
|
self.classes = [] |
|
with open("coco.names", "r") as f: |
|
self.classes = [line.strip() for line in f.readlines()] |
|
def get_patches(self, img): |
|
patches = [] |
|
for (x1, y1), (x2, y2), color, confidence, label in self.forward(img): |
|
if (x1 == x2 or y1 == y2): |
|
continue |
|
print((x1, y1), (x2, y2)) |
|
patches.append(img[y1:y2, x1:x2]) |
|
return patches |
|
def forward(self, img): |
|
height, width, channels = img.shape |
|
|
|
|
|
blob = cv2.dnn.blobFromImage(img, 0.00392, (416, 416), (0, 0, 0), True, crop=False) |
|
self.net.setInput(blob) |
|
|
|
|
|
outs = self.net.forward(self.output_layers) |
|
|
|
|
|
class_ids = [] |
|
confidences = [] |
|
boxes = [] |
|
for out in outs: |
|
for detection in out: |
|
scores = detection[5:] |
|
class_id = np.argmax(scores) |
|
class_confidence = scores[class_id] |
|
object_confidence = detection[4] |
|
if object_confidence > 0.5: |
|
|
|
center_x = int(detection[0] * width) |
|
center_y = int(detection[1] * height) |
|
w = int(detection[2] * width) |
|
h = int(detection[3] * height) |
|
|
|
|
|
x = int(center_x - w / 2) |
|
y = int(center_y - h / 2) |
|
if x < 0 or y < 0: |
|
continue |
|
boxes.append([x, y, w, h]) |
|
confidences.append(float(class_confidence)) |
|
class_ids.append(class_id) |
|
|
|
|
|
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4) |
|
for i in range(len(boxes)): |
|
if i in indexes: |
|
x, y, w, h = boxes[i] |
|
label = str(self.classes[class_ids[i]]) |
|
confidence = confidences[i] |
|
color = (0, 255, 0) |
|
if label == "person": |
|
yield (x + X1_OFFSET, y + Y1_OFFSET), (x + w + X2_OFFSET, y + h + Y2_OFFSET), color, confidence, label |
|
__call__ = get_patches |
|
|
|
def display(yolo_model:YOLO): |
|
cam = cv2.VideoCapture(0) |
|
while True: |
|
ret, img = cam.read() |
|
if not ret: |
|
print("unable to record") |
|
continue |
|
for (x1, y1), (x2, y2), color, confidence, label in yolo_model.forward(img): |
|
print(x1, y1, x2, y2) |
|
cv2.rectangle(img, (x1, y1), (x2, y2), color, 2) |
|
cv2.putText(img, f"{label} {confidence:.2f}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) |
|
cv2.imshow("Camera Feed", img) |
|
if cv2.waitKey(1) & 0xFF == ord('q'): |
|
break |
|
|
|
cam.release() |
|
cv2.destroyAllWindows() |
|
|
|
if __name__ == "__main__": |
|
yolo_model = YOLO() |
|
display(yolo_model=yolo_model) |