File size: 2,892 Bytes
0f13a98 de8d663 0f13a98 de8d663 0f13a98 e644d73 0f13a98 6149b12 0f13a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import gradio as gr
import torch, torchvision
from torchvision import transforms
from resnet import ResNet18
from resnet import ResBlocks
from PIL import Image
import numpy as np
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
model = ResNet18(0.00333)
state_model = torch.load("final_model.pkl", map_location=torch.device('cpu'))
state_dict = state_model.state_dict()
model.load_state_dict(state_dict, strict=False)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
inv_normalize = transforms.Normalize(
mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23],
std=[1/0.23, 1/0.23, 1/0.23]
)
def resize_image_pil(image, new_width, new_height):
img = Image.fromarray(np.array(image))
width, height = img.size
width_scale = new_width / width
height_scale = new_height / height
scale = min(width_scale, height_scale)
resized = img.resize((int(width*scale), int(height*scale)), Image.NEAREST)
resized = resized.crop((0, 0, new_width, new_height))
return np.array(resized)
def inference(input_img, transparency = 0.5, target_layer_number = -1):
input_img = resize_image_pil(input_img, 32, 32)
org_img = input_img
input_img = input_img.reshape((32, 32, 3))
transform = transforms.ToTensor()
input_img = transform(input_img)
input_img = input_img.unsqueeze(0)
input_img = cifar10_normalization()(input_img)
outputs = model(input_img)
softmax = torch.nn.Softmax(dim=0)
o = softmax(outputs.flatten())
confidences = {classes[i]: float(o[i]) for i in range(10)}
_, prediction = torch.max(outputs, 1)
target_layers = [model.res_layers[2][target_layer_number]]
cam = GradCAM(model=model, target_layers=target_layers)
grayscale_cam = cam(input_tensor=input_img, targets=None)
grayscale_cam = grayscale_cam[0, :]
#mistake where lol
img = input_img.squeeze(0)
img = inv_normalize(img)
print(transparency)
visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency)
return classes[prediction[0].item()], visualization, confidences
title = "CIFAR10 trained on ResNet18 Model with GradCAM"
description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results"
iface = gr.Interface(
inference,
inputs = [
gr.Image(width=256, height=256, label="Input Image"),
gr.Slider(0, 1, value = 0.5, label="Overall Opacity of Image"),
gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?")
],
outputs = [
"text",
gr.Image(width=256, height=256, label="Output"),
gr.Label(num_top_classes=3)
],
title = title,
description = description,
)
iface.launch() |