File size: 4,420 Bytes
0f13a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
import torch.nn as nn
from pytorch_lightning import LightningModule
from torch.optim.lr_scheduler import OneCycleLR
from torchmetrics import Accuracy
import torch.nn.functional as F

BATCH_SIZE = 256

class ResBlocks(LightningModule):
    
    def __init__(self, inchannels, outchannels, stride):
        super(ResBlocks, self).__init__()
        
        self.conv1 = self.make_conv(inchannels, outchannels, stride=stride)
        self.conv2 = self.make_conv(outchannels, outchannels)
    
        if stride != 1 or inchannels != outchannels:
            self.shortcut = nn.Sequential(
                nn.Conv2d(inchannels, outchannels, kernel_size=1, stride=stride)
            )
    
    def make_conv(self, inchannels, outchannels, kernel=3, padding=1, stride=1):
        
        layers = []
        
        layers.append(nn.Conv2d(in_channels=inchannels, out_channels=outchannels, kernel_size=kernel, padding=padding, stride=stride))
        layers.append(nn.BatchNorm2d(outchannels))
        layers.append(nn.ReLU())
        
        return nn.Sequential(*layers)
    
    def forward(self, x):
        
        shortcut = self.shortcut(x) if hasattr(self, 'shortcut') else x
        out = self.conv1(x)
        out = self.conv2(out)
        
        return out + shortcut
    
class ResNet18(LightningModule):
    def __init__(self, lr=0.05):
        super(ResNet18, self).__init__()
        
        self.save_hyperparameters()
        self.avgpool = nn.AvgPool2d(kernel_size=4)
        self.fc =  self.make_FC()
        self.accuracy = Accuracy(task="multiclass", num_classes=10)
        self.in_layers = [64, 64, 128, 256]
        self.out_layers = [64, 128, 256, 512]
        self.strides = [1, 2, 2, 2]
        self.num = [2, 2, 2, 2]
        
        self.convin = nn.Sequential(
                nn.Conv2d(3, 64, 3, bias=False),
                nn.BatchNorm2d(64),
                nn.ReLU()   
        )
        self.res_layers = nn.ModuleList([self.make_res(self.in_layers[i], self.out_layers[i], self.num[i], self.strides[i]) for i in range(len(self.in_layers))])
    
    
    def make_res(self, inchannels, outchannels, num, stride):
        
        strides = [stride] + [1] * (num-1)
        layers = []
        
        for stride in strides:
            layers.append(ResBlocks(inchannels=inchannels, outchannels=outchannels, stride=stride))
            inchannels = outchannels
        
        return nn.Sequential(*layers)
        
    
    def make_FC(self):
        
        layers = []
        
        layers.append(nn.Linear(512, 256))
        layers.append(nn.GELU())
        layers.append(nn.Linear(256, 10))
        layers.append(nn.LogSoftmax(dim=1))
        
        return nn.Sequential(*layers)

    def forward(self, x):

        x = self.convin(x)
        
        for layer in self.res_layers:
            x = layer(x)
        
        x = self.avgpool(x)
        x = x.view(-1, 512)
        x = self.fc(x)
        
        return x
    
    def training_step(self, batch, batch_idx):
        x, y = batch
        logits = self(x)
        loss = F.nll_loss(logits, y)
        self.log("train_loss", loss)
        return loss

    def evaluate(self, batch, stage=None):
        x, y = batch
        logits = self(x)
        loss = F.nll_loss(logits, y)
        preds = torch.argmax(logits, dim=1)
        acc = self.accuracy(preds, y)

        if stage:
            self.log(f"{stage}_loss", loss, prog_bar=True)
            self.log(f"{stage}_acc", acc, prog_bar=True)

    def validation_step(self, batch, batch_idx):
        self.evaluate(batch, "val")

    def test_step(self, batch, batch_idx):
        self.evaluate(batch, "test")

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(
           self.parameters(),
           lr=self.hparams.lr,
            weight_decay=5e-4,
        )
        steps_per_epoch = 45000 // BATCH_SIZE
        scheduler_dict = {
            "scheduler": OneCycleLR(
                optimizer, 
                max_lr=1.26*1e-2,
                steps_per_epoch=steps_per_epoch, 
                epochs=20,
                pct_start=0.2,
                div_factor=10, 
                three_phase=False,
                final_div_factor=10,
                anneal_strategy='linear'
            ),
            "interval": "step",
        }
        return {"optimizer": optimizer, "lr_scheduler": scheduler_dict}