File size: 4,420 Bytes
0f13a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import torch
import torch.nn as nn
from pytorch_lightning import LightningModule
from torch.optim.lr_scheduler import OneCycleLR
from torchmetrics import Accuracy
import torch.nn.functional as F
BATCH_SIZE = 256
class ResBlocks(LightningModule):
def __init__(self, inchannels, outchannels, stride):
super(ResBlocks, self).__init__()
self.conv1 = self.make_conv(inchannels, outchannels, stride=stride)
self.conv2 = self.make_conv(outchannels, outchannels)
if stride != 1 or inchannels != outchannels:
self.shortcut = nn.Sequential(
nn.Conv2d(inchannels, outchannels, kernel_size=1, stride=stride)
)
def make_conv(self, inchannels, outchannels, kernel=3, padding=1, stride=1):
layers = []
layers.append(nn.Conv2d(in_channels=inchannels, out_channels=outchannels, kernel_size=kernel, padding=padding, stride=stride))
layers.append(nn.BatchNorm2d(outchannels))
layers.append(nn.ReLU())
return nn.Sequential(*layers)
def forward(self, x):
shortcut = self.shortcut(x) if hasattr(self, 'shortcut') else x
out = self.conv1(x)
out = self.conv2(out)
return out + shortcut
class ResNet18(LightningModule):
def __init__(self, lr=0.05):
super(ResNet18, self).__init__()
self.save_hyperparameters()
self.avgpool = nn.AvgPool2d(kernel_size=4)
self.fc = self.make_FC()
self.accuracy = Accuracy(task="multiclass", num_classes=10)
self.in_layers = [64, 64, 128, 256]
self.out_layers = [64, 128, 256, 512]
self.strides = [1, 2, 2, 2]
self.num = [2, 2, 2, 2]
self.convin = nn.Sequential(
nn.Conv2d(3, 64, 3, bias=False),
nn.BatchNorm2d(64),
nn.ReLU()
)
self.res_layers = nn.ModuleList([self.make_res(self.in_layers[i], self.out_layers[i], self.num[i], self.strides[i]) for i in range(len(self.in_layers))])
def make_res(self, inchannels, outchannels, num, stride):
strides = [stride] + [1] * (num-1)
layers = []
for stride in strides:
layers.append(ResBlocks(inchannels=inchannels, outchannels=outchannels, stride=stride))
inchannels = outchannels
return nn.Sequential(*layers)
def make_FC(self):
layers = []
layers.append(nn.Linear(512, 256))
layers.append(nn.GELU())
layers.append(nn.Linear(256, 10))
layers.append(nn.LogSoftmax(dim=1))
return nn.Sequential(*layers)
def forward(self, x):
x = self.convin(x)
for layer in self.res_layers:
x = layer(x)
x = self.avgpool(x)
x = x.view(-1, 512)
x = self.fc(x)
return x
def training_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)
self.log("train_loss", loss)
return loss
def evaluate(self, batch, stage=None):
x, y = batch
logits = self(x)
loss = F.nll_loss(logits, y)
preds = torch.argmax(logits, dim=1)
acc = self.accuracy(preds, y)
if stage:
self.log(f"{stage}_loss", loss, prog_bar=True)
self.log(f"{stage}_acc", acc, prog_bar=True)
def validation_step(self, batch, batch_idx):
self.evaluate(batch, "val")
def test_step(self, batch, batch_idx):
self.evaluate(batch, "test")
def configure_optimizers(self):
optimizer = torch.optim.Adam(
self.parameters(),
lr=self.hparams.lr,
weight_decay=5e-4,
)
steps_per_epoch = 45000 // BATCH_SIZE
scheduler_dict = {
"scheduler": OneCycleLR(
optimizer,
max_lr=1.26*1e-2,
steps_per_epoch=steps_per_epoch,
epochs=20,
pct_start=0.2,
div_factor=10,
three_phase=False,
final_div_factor=10,
anneal_strategy='linear'
),
"interval": "step",
}
return {"optimizer": optimizer, "lr_scheduler": scheduler_dict} |