import pickle, joblib import gradio as gr from datetime import datetime, timedelta, timezone model = joblib.load('model.pkl') def preprocess_city(selected_city): # Map the selected city to its one-hot encoded representation city_mapping = { 'Hyderabad' : [1, 0, 0, 0, 0, 0, 0], 'Indore': [1, 0, 0, 0, 0, 0, 0], 'Jaipur': [0, 1, 0, 0, 0, 0, 0], 'Mahabaleshwar': [0, 0, 1, 0, 0, 0, 0], 'Mussoorie': [0, 0, 0, 1, 0, 0, 0], 'Raipur': [0, 0, 0, 0, 1, 0, 0], 'Udaipur': [0, 0, 0, 0, 0, 1, 0], 'Varanasi': [0, 0, 0, 0, 0, 0, 1] } return city_mapping[selected_city] def preprocess_date(date_string): # Parse the date string into a datetime object date_obj = datetime.strptime(date_string, '%Y-%m-%d') year = date_obj.year month = date_obj.month day = date_obj.day return year, month, day def calculate_lead_time(checkin_date): # Convert input date to datetime object input_date = datetime.strptime(checkin_date, '%Y-%m-%d') # Get current date and time in GMT+5:30 timezone current_date = datetime.now(timezone(timedelta(hours=5, minutes=30))) # Make current_date an aware datetime with the same timezone current_date = current_date.replace(tzinfo=input_date.tzinfo) # Calculate lead time as difference in days lead_time = (input_date - current_date).days return lead_time def is_weekend(checkin_date): # Convert input date to datetime object input_date = datetime.strptime(checkin_date, '%Y-%m-%d') # Calculate the day of the week (0=Monday, 6=Sunday) day_of_week = input_date.weekday() # Check if the day is Friday (4) or Saturday (5) return 1 if day_of_week == 4 or day_of_week == 5 else 0 def predict(selected_city, checkin_date, star_rating, text_rating, season, additional_views, room_category): # Preprocess user input # Here, selected_city is the name of the city selected from the dropdown # checkin_date is the date selected using the text input # star_rating is the selected star rating from the dropdown # text_rating is the numeric rating from the text box # season is the selected option from the radio button (On Season or Off Season) season_binary = 1 if season == 'On Season' else 0 # additional_views is the selected option from the radio button (Yes or No) additional_views_binary = 1 if additional_views == 'Yes' else 0 room_categories = ["Dorm", "Standard", "Deluxe", "Executive", "Suite"] room_category_number = room_categories.index(room_category) # Preprocess the date year, month, day = preprocess_date(checkin_date) # Preprocess the selected city city_encoded = preprocess_city(selected_city) # Calculate lead time lead_time = calculate_lead_time(checkin_date) # Calculate if the input date is a weekend (1) or weekday (0) is_weekend_value = is_weekend(checkin_date) # Combine all the input features input_data = [star_rating, text_rating, season_binary, day, month, year, is_weekend_value, lead_time,room_category_number, additional_views_binary]+city_encoded # Make predictions using the model prediction = model.predict([input_data]) return "{:.2f}".format(prediction[0]) # Define input components city_dropdown = gr.components.Dropdown(choices=['Hyderabad', 'Indore', 'Jaipur', 'Mahabaleshwar', 'Mussoorie', 'Raipur', 'Udaipur', 'Varanasi'], label='Select a City') date_input = gr.components.Textbox(label='Check-in Date (YYYY-MM-DD)') star_rating_dropdown = gr.components.Dropdown(choices=[1, 2, 3, 4, 5], label='Select Star Rating') text_rating_input = gr.components.Number(label='Enter Numeric Rating (1-5)') season_radio = gr.components.Radio(['On Season', 'Off Season'], label='Season') room_category_dropdown = gr.components.Dropdown(choices=["Dorm", "Standard", "Deluxe", "Executive", "Suite"], label='Select Room Category') additional_views_radio = gr.components.Radio(['Yes', 'No'], label='Additional Views') # Define output component output = gr.components.Textbox(label='Predicted Output') # Create the interface interface = gr.Interface(fn=predict, inputs=[city_dropdown, date_input, star_rating_dropdown, text_rating_input, season_radio, additional_views_radio, room_category_dropdown], outputs=output, title='Model Prediction Interface') # Launch the interface interface.launch()