File size: 22,249 Bytes
0f5f6d3 5dc8161 6196475 0f5f6d3 af9d37a 8d15d81 7f2024d af9d37a 876ad06 0f5f6d3 7216f39 e0fff0e 7216f39 e0fff0e 0f5f6d3 bd11228 0f5f6d3 7f2024d 0f5f6d3 6196475 2a24c63 6196475 2a24c63 6196475 2a24c63 6196475 0f5f6d3 842b0e1 9d6ef8d 842b0e1 9d6ef8d 842b0e1 e0fff0e 842b0e1 0f5f6d3 7f2024d 0f5f6d3 e0fff0e 0f5f6d3 7f2024d 7216f39 2fe0690 e0fff0e 0f5f6d3 e0fff0e 0f5f6d3 50f8f8c 0f5f6d3 e0fff0e 3045ca3 e0fff0e 0f5f6d3 e0fff0e 0f5f6d3 7216f39 e0fff0e 842b0e1 e0fff0e 7216f39 e0fff0e 9d6ef8d 876ad06 9d6ef8d 876ad06 9d6ef8d 876ad06 9d6ef8d 876ad06 9d6ef8d 876ad06 9d6ef8d 876ad06 9d6ef8d e0fff0e 9d6ef8d e0fff0e 9d6ef8d 876ad06 e0fff0e 876ad06 e0fff0e 876ad06 9d6ef8d 876ad06 9d6ef8d e0fff0e 9d6ef8d f877d59 9d6ef8d 0f5f6d3 af9d37a 0f5f6d3 af9d37a 0f5f6d3 af9d37a 0f5f6d3 3045ca3 7f2024d af9d37a 3045ca3 0f5f6d3 7f2024d 0f5f6d3 7f2024d 0f5f6d3 af9d37a 0f5f6d3 3045ca3 0f5f6d3 9d6ef8d e0fff0e 9d6ef8d 0f5f6d3 6196475 2a24c63 6196475 0f5f6d3 5dc8161 0f5f6d3 6196475 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
"""
NVIDIA CUDA-Q VQE Demo
=====================
This Gradio application demonstrates the Variational Quantum Eigensolver (VQE)
algorithm using NVIDIA's CUDA Quantum library. The demo allows users to:
1. Select from available molecules
2. Adjust bond length parameters
3. Run VQE simulations with real-time visualization
4. View energy convergence and molecular structure in 3D
Running the Demo
---------------
1. Ensure you have all dependencies installed:
```bash
pip install -r requirements.txt
```
2. Launch the application:
```bash
python app.py
```
3. Open your browser to the local URL displayed in the terminal
(typically http://localhost:7860)
Using the Interface
-----------------
- Select a molecule from the dropdown
- Adjust bond length using the slider (0.5 to 2.5 Γ
)
- Click "Run VQE Simulation" or watch real-time updates as you adjust parameters
- View results in three panels:
* Simulation Results: Shows final energy and optimization status
* VQE Convergence: Plots energy vs. iteration
* Molecule Visualization: 3D representation of the molecule
GPU Acceleration
--------------
The app automatically detects if NVIDIA GPUs are available:
- With GPU: Uses CUDA-Q's nvidia backend for acceleration
- Without GPU: Falls back to CPU-based quantum simulation
References
---------
- Installation: See Cuda-Q_install.md
- VQE Implementation: See VQE_Example.md
- Project Structure: See quantum-demo-blueprint.md
"""
import spaces
from gradio_client import Client
from gradio.routes import Request as gr_Request
import subprocess
import sys
import json
import os
import logging
from logging.handlers import RotatingFileHandler
import gradio as gr
import numpy as np
from quantum_utils import run_vqe_simulation
from visualization import plot_convergence, create_molecule_viewer, format_molecule_params
import plotly.graph_objects as go
# Configure logging
os.makedirs('logs', exist_ok=True)
# Create formatters
file_formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
console_formatter = logging.Formatter('%(levelname)s - %(message)s')
# Set up file handler with rotation
file_handler = RotatingFileHandler(
'logs/vqe_simulation.log',
maxBytes=1024 * 1024, # 1MB per file
backupCount=3 # Keep 3 backup files
)
file_handler.setFormatter(file_formatter)
file_handler.setLevel(logging.DEBUG)
# Set up console handler with less verbose output
console_handler = logging.StreamHandler()
console_handler.setFormatter(console_formatter)
console_handler.setLevel(logging.INFO) # Only show INFO and above in console
# Configure root logger
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
# Remove any existing handlers
for handler in logger.handlers[:]:
logger.removeHandler(handler)
# Add our handlers
logger.addHandler(file_handler)
logger.addHandler(console_handler)
# Disable other loggers that might be too verbose
logging.getLogger('httpcore.http11').setLevel(logging.WARNING)
logging.getLogger('httpx').setLevel(logging.WARNING)
logging.getLogger('gradio').setLevel(logging.WARNING)
# Log startup message
logger.info("VQE Demo Application Starting")
def install_dependencies():
print("""Install required packages from requirements.txt.""")
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", "-r", "requirements.txt"])
print("Dependencies installed successfully")
except subprocess.CalledProcessError as e:
print(f"Error installing dependencies: {e}")
sys.exit(1)
# Test if cudaq is already installed
try:
import cudaq
print("CUDA-Q already installed, skipping dependency installation")
except ImportError:
print("CUDA-Q not found, installing dependencies...")
# Run installation before any other imports
install_dependencies()
# Load molecule definitions
def load_molecules():
"""Load molecule definitions from JSON file."""
try:
with open('molecules.json', 'r') as f:
all_molecules = json.load(f)
# Filter to only include enabled molecules
enabled_molecules = {k: v for k, v in all_molecules.items() if v.get('enabled', 0) == 1}
if not enabled_molecules:
print("Warning: No enabled molecules found in molecules.json", file=sys.stderr)
return enabled_molecules
except Exception as e:
print(f"Error loading molecules.json: {e}", file=sys.stderr)
return {}
# Now import the rest of the modules
print("about to import numpy and quantum_utils", file=sys.stderr, flush=True)
import numpy as np
from quantum_utils import run_vqe_simulation
from visualization import plot_convergence, create_molecule_viewer, format_molecule_params
# Add immediate logging
print("Imported all modules successfully", file=sys.stderr, flush=True)
def update_simulation(molecule_choice: str, scale_factor: float) -> tuple:
"""
Run VQE simulation and update visualizations.
Args:
molecule_choice: Selected molecule from available options
scale_factor: Factor to scale the molecule geometry by (1.0 = original size)
Returns:
Tuple of (energy text, convergence plot, molecule HTML)
"""
print("UPDATE_SIMULATION CALLED", file=sys.stderr, flush=True)
try:
# Get molecule data
molecules = load_molecules()
if molecule_choice not in molecules:
raise ValueError(f"Unknown molecule: {molecule_choice}")
molecule_data = molecules[molecule_choice]
print(f"Starting simulation with molecule: {molecule_choice}, scale: {scale_factor}",
file=sys.stderr, flush=True)
# Run VQE simulation
results = run_vqe_simulation(
molecule_data=molecule_data,
scale_factor=scale_factor
)
print(f"VQE simulation completed with results: {results}",
file=sys.stderr, flush=True)
# Create plots
print("Creating convergence plot...", file=sys.stderr)
convergence_plot = plot_convergence(results)
print("Convergence plot created", file=sys.stderr)
print("Creating molecule visualization...", file=sys.stderr)
molecule_html = create_molecule_viewer(molecule_choice, scale_factor)
print("Molecule visualization created", file=sys.stderr)
# Format energy output
energy_text = f"""
Final Energy: {results['final_energy']:.6f} Hartree
Optimization Status: {'Success' if results['success'] else 'Failed'}
Message: {results['message']}
Number of Iterations: {len(results['history'])}
Scale Factor: {scale_factor:.2f}
"""
print("Returning results...", file=sys.stderr)
return energy_text, convergence_plot, molecule_html
except Exception as e:
import traceback
error_msg = f"Error in simulation:\n{str(e)}\n\nTraceback:\n{traceback.format_exc()}"
print(error_msg, file=sys.stderr) # This will show in the server logs
return error_msg, None, None
def create_interface():
"""Create the Gradio interface for the VQE demo."""
def set_client_for_session(request: gr.Request):
"""Initialize client with user's IP token to handle rate limiting."""
logger.info(f"Setting client for session with request: {request}")
try:
# Try to initialize client with HF token from environment variable
client = Client("A19grey/Cuda-Quantum-Molecular-Playground", hf_token=os.getenv("HF_TOKEN"))
logger.info(f"Client initialized with A19grey HF token")
return client
except Exception as e:
logger.error(f"Error setting client with HF token: {e}")
try:
# Fallback to using x-ip-token from request headers
x_ip_token = request.headers['x-ip-token']
logger.info(f"Client initialized with x-ip-token from request headers")
return Client("A19grey/Cuda-Quantum-Molecular-Playground", headers={"x-ip-token": x_ip_token})
except Exception as e:
logger.error(f"Error setting client with x-ip-token: {e}")
return None
# Load available molecules
molecules = load_molecules()
if not molecules:
raise ValueError("No molecules found in molecules.json")
with gr.Blocks(title="CUDA-Q VQE Demo") as demo:
gr.Markdown("""
# π¬ NVIDIA CUDA-Q VQE Demo
This demo harnesses the power of **NVIDIA's GPU-accelerated CUDA Quantum** library to simulate quantum systems
on classical hardware. The process works in two steps:
1. π Generate the [Hamiltonian](https://quantumfrontiers.com/2017/01/31/hamiltonian-an-american-musical-without-americana-or-music/) - *the mathematical description of the system's energy*
2. βοΈ Use the **Variational Quantum Eigensolver (VQE)** algorithm to calculate the ground state energy
## How to Use
> π Select a molecule below, adjust its parameters, and watch as the simulation computes the lowest
> possible energy state using quantum-inspired algorithms accelerated by NVIDIA GPUs.
## Important Note
β οΈ Even for small molecules, the quantum circuits can become quite complex. In this demo, we show only the first terms.
> π‘ **Pro Tip:** In real-world applications, even with GPU acceleration, scientists use more advanced methods
> that focus on simulating only outer shell electrons for practical quantum chemistry calculations.
---
*Inspired by the [NVIDIA CUDA-Q VQE Example](https://nvidia.github.io/cuda-quantum/latest/applications/python/vqe_advanced.html)*
""")
client = gr.State()
state = gr.State({})
# Top section: 3 columns
with gr.Row():
with gr.Column(scale=1):
molecule_choice = gr.Dropdown(
choices=list(molecules.keys()),
value=None,
label="Select Molecule",
interactive=True,
allow_custom_value=False
)
default_molecule = molecules[list(molecules.keys())[0]]
scale_factor = gr.Slider(
minimum=default_molecule['scale_range']['min'],
maximum=default_molecule['scale_range']['max'],
value=default_molecule['default_scale'],
step=default_molecule['scale_range']['step'],
label="Scale Factor (1.0 = original size)",
interactive=True
)
with gr.Column(scale=1):
params_display = gr.HTML(
label="Molecule Parameters",
value="<div>Select a molecule to view its parameters</div>"
)
with gr.Column(scale=1):
molecule_viz = gr.Plot(
label="3D Molecule Viewer",
show_label=True
)
# Middle section: Buttons and results in 2 columns
with gr.Row():
with gr.Column(scale=1):
# Buttons side by side
with gr.Row():
generate_ham_button = gr.Button("Generate Hamiltonian")
run_vqe_button = gr.Button("Find that ground state!", interactive=False)
# Hamiltonian Information
simulation_results = gr.HTML(
label="Hamiltonian Information",
value="<div style='padding: 10px; background-color: #f5f5f5; border-radius: 5px; font-size: 0.8em;'>" +
"Click 'Generate Hamiltonian' to start.</div>"
)
with gr.Column(scale=1):
# VQE Convergence Plot
convergence_plot = gr.Plot(
label="VQE Convergence",
show_label=True
)
# Bottom section: Full width circuit visualization
circuit_latex_display = gr.Markdown(
label="Quantum Circuit Visualization",
value="Circuit will be displayed after generation.",
elem_classes="circuit-output"
)
# Add CSS styling
gr.Markdown("""
<style>
.circuit-output {
font-family: monospace;
font-size: 0.6em;
white-space: pre;
overflow-x: auto;
padding: 10px;
background-color: #f8f8f8;
width: 100%;
max-width: 100%;
box-sizing: border-box;
display: block;
}
.circuit-output pre {
margin: 0 auto;
background: none !important;
border: none !important;
padding: 0 !important;
width: 100%;
overflow-x: auto;
}
.circuit-output code {
background: none !important;
border: none !important;
padding: 0 !important;
}
.gradio-container .prose {
max-width: 100% !important;
width: 100% !important;
}
.markdown-text {
width: 100% !important;
max-width: none !important;
}
</style>
""")
def generate_hamiltonian(molecule_choice: str, scale_factor: float) -> tuple:
"""Generate Hamiltonian for the selected molecule."""
logger.info(f"Starting Hamiltonian generation for molecule: {molecule_choice}, scale: {scale_factor}")
try:
# Get molecule data
logger.debug("Loading molecule data from molecules dictionary")
if molecule_choice not in molecules:
logger.error(f"Molecule {molecule_choice} not found in molecules dictionary")
return "<div>Error: Invalid molecule selection</div>", "", gr.update(interactive=False), None
molecule_data = molecules[molecule_choice]
logger.debug(f"Loaded molecule data: {molecule_data}")
# Generate Hamiltonian only
logger.info("Calling run_vqe_simulation with hamiltonian_only=True")
results = run_vqe_simulation(
molecule_data=molecule_data,
scale_factor=scale_factor,
hamiltonian_only=True
)
logger.debug(f"VQE simulation results: {results}")
# Format Hamiltonian results
logger.debug("Formatting Hamiltonian results")
hamiltonian_html = f"""
<div style='padding: 10px; background-color: #f5f5f5; border-radius: 5px; font-size: 0.8em;'>
<h3>Hamiltonian Generated:</h3>
<ul style='list-style-type: none; padding-left: 0;'>
<li><b>Number of Qubits:</b> {results['qubit_count']}</li>
<li><b>Number of Electrons:</b> {results['electron_count']}</li>
<li><b>Hamiltonian Terms:</b> {results['hamiltonian_terms']}</li>
<li style='margin-top: 8px; color: #2a6f97;'><b>Quantum Circuit Parameters:</b> {results['parameter_count']} <i>(parameters needed to represent the system in quantum circuit form)</i></li>
<li><b>Scale Factor:</b> {scale_factor:.2f}</li>
</ul>
<p><i>Ready to run VQE optimization.</i></p>
</div>
"""
# Format circuit output
logger.debug("Formatting circuit LaTeX output")
circuit_latex = f"""<div class='circuit-output'><pre>{results.get('circuit_latex', 'Circuit visualization not available').replace('`', '`')}</pre></div>"""
logger.info("Successfully generated Hamiltonian and circuit visualization")
return hamiltonian_html, circuit_latex, gr.update(interactive=True), None
except Exception as e:
import traceback
logger.error(f"Error in generate_hamiltonian: {str(e)}\n{traceback.format_exc()}")
error_msg = f"<div style='color: red;'>Error generating Hamiltonian:<br>{str(e)}</div>"
return error_msg, "Error generating circuit visualization", gr.update(interactive=False), None
def run_vqe_optimization(molecule_choice: str, scale_factor: float) -> tuple:
"""Run VQE optimization after Hamiltonian is generated."""
try:
# Get molecule data
molecule_data = molecules[molecule_choice]
# Run full VQE simulation
results = run_vqe_simulation(
molecule_data=molecule_data,
scale_factor=scale_factor,
hamiltonian_only=False
)
# Create plots
convergence_plot = plot_convergence(results)
# Format simulation results without the optimization status
simulation_html = f"""
<div style='padding: 10px; background-color: #f5f5f5; border-radius: 5px;'>
<h3>VQE Optimization Results:</h3>
<ul style='list-style-type: none; padding-left: 0;'>
<li><b>Final Energy:</b> {results['final_energy']:.6f} Hartree</li>
<li><b>Parameter Count:</b> {results['parameter_count']}</li>
<li><b>Hamiltonian Terms:</b> {results['hamiltonian_terms']}</li>
<li><b>Iterations:</b> {len(results['history'])}</li>
<li><b>Scale Factor:</b> {scale_factor:.2f}</li>
</ul>
<p><i>{results['message']}</i></p>
</div>
"""
return simulation_html, convergence_plot
except Exception as e:
error_msg = f"<div style='color: red;'>Error in VQE optimization:<br>{str(e)}</div>"
return error_msg, None
def update_molecule_info(molecule_choice):
"""Update description and scale range when molecule is selected."""
try:
logger.info(f"Updating molecule info for: {molecule_choice}")
mol_data = molecules[molecule_choice]
# Format parameters display
params_html = format_molecule_params(mol_data)
logger.debug(f"Generated parameter HTML for {molecule_choice}")
# Get scale range values with defaults
min_scale = mol_data.get('scale_range', {}).get('min', 0.1)
max_scale = mol_data.get('scale_range', {}).get('max', 3.0)
default_scale = mol_data.get('default_scale', 1.0)
step_size = mol_data.get('scale_range', {}).get('step', 0.05)
logger.debug(f"Scale parameters - min: {min_scale}, max: {max_scale}, default: {default_scale}")
# Create molecule visualization using Plotly
logger.info(f"Creating Plotly molecule visualization for {molecule_choice}")
mol_plot = create_molecule_viewer(molecule_choice, default_scale)
if mol_plot is None:
logger.error(f"No molecule visualization created for {molecule_choice}")
mol_plot = go.Figure() # Empty figure as fallback
return [
params_html,
gr.update(
minimum=min_scale,
maximum=max_scale,
value=default_scale,
step=step_size
),
mol_plot
]
except Exception as e:
logger.error(f"Error updating molecule info: {str(e)}", exc_info=True)
return [
"<div>Error loading molecule parameters</div>",
gr.update(
minimum=0.1,
maximum=3.0,
value=1.0,
step=0.05
),
go.Figure() # Empty figure as fallback
]
# Update parameters and 3D view when molecule changes
molecule_choice.change(
fn=update_molecule_info,
inputs=[molecule_choice],
outputs=[params_display, scale_factor, molecule_viz]
)
# Generate Hamiltonian when button is clicked
generate_ham_button.click(
fn=generate_hamiltonian,
inputs=[molecule_choice, scale_factor],
outputs=[simulation_results, circuit_latex_display, run_vqe_button, convergence_plot]
)
# Run VQE optimization when button is clicked
run_vqe_button.click(
fn=run_vqe_optimization,
inputs=[molecule_choice, scale_factor],
outputs=[simulation_results, convergence_plot]
)
# Add load event to set client
logger.info("Adding load event to set client")
demo.load(set_client_for_session, None, client)
return demo
if __name__ == "__main__":
print("Starting VQE Demo Application")
demo = create_interface()
print("Launching demo with custom headers support")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
ssr_mode=False,
show_api=True # Enable API endpoints
) |