File size: 28,072 Bytes
0f5f6d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 |
# -*- coding: utf-8 -*-
"""Copy of cudaq_logical_aim_agk.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1Jsf9Le8eoCJgddNzYvfQO4E7g--N-DyC
# AIM: Logical Anderson Impurity Model on Sqale using CUDA-Q
[](https://colab.research.google.com/github/Infleqtion/client-superstaq/blob/main/docs/source/apps/cudaq_logical_aim.ipynb) [](https://mybinder.org/v2/gh/Infleqtion/client-superstaq/HEAD?labpath=docs/source/apps/cudaq_logical_aim.ipynb)
Ground state quantum chemistryβcomputing total energies of molecular configurations to within chemical accuracyβis perhaps the most highly-touted industrial application of fault-tolerant quantum computers. Strongly correlated materials, for example, are particularly interesting, and tools like dynamical mean-field theory (DMFT) allow one to account for the effect of their strong, localized electronic correlations. These DMFT models help predict material properties by approximating the system as a single site impurity inside a βbathβ that encompasses the rest of the system. Simulating such dynamics can be a tough task using classical methods, but can be done efficiently on a quantum computer via quantum simulation.
In this notebook, we showcase a workflow for preparing the ground state of the minimal single-impurity Anderson model (SIAM) using the Hamiltonian Variational Ansatz for a range of realistic parameters. As a first step towards running DMFT on a fault-tolerant quantum computer, we will use logical qubits encoded in the `[[4, 2, 2]]` code. Using this workflow, we will obtain the ground state energy estimates via noisy simulation, and then also execute the corresponding optimized circuits on Infleqtion's gate-based neutral-atom quantum computer, making the benefits of logical qubits apparent. More details can be found in our [paper](https://arxiv.org/abs/2412.07670).
[agk] - 2024-12-23 Reference chats to understand AIM model - https://gemini.google.com/app/fce0538c8dc2b6ac and https://x.com/i/grok/share/AV9UkWb4LNtfqm1HfLPEQ78HG
This demo notebook uses CUDA-Q (`cudaq`) and a CUDA-QX library, `cudaq-solvers`; let us first begin by importing (and installing as needed) these packages:
"""
# Commented out IPython magic to ensure Python compatibility.
try:
import cudaq_solvers as solvers
import cudaq
import matplotlib.pyplot as plt
except ImportError:
print("Installing required packages...")
# %pip install --quiet 'cudaq-solvers' 'matplotlib'
print("Installed `cudaq`, `cudaq-solvers`, and `matplotlib` packages.")
print("You may need to restart the kernel to import newly installed packages.")
import cudaq_solvers as solvers
import cudaq
import matplotlib.pyplot as plt
from collections.abc import Mapping, Sequence
import numpy as np
from scipy.optimize import minimize
import os
from IPython.core.display import HTML
print("restarting Kernel")
HTML("<script>Jupyter.notebook.kernel.restart()</script>")
print("Kernel restarted. Probably, I don't know... I'm not magic")
"""## Performing logical Variational Quantum Eigensolver (VQE) with CUDA-QX
To prepare our ground state quantum Anderson impurity model circuits (referred to as AIM circuits in this notebook for short), we use VQE to train an ansatz to minimize a Hamiltonian and obtain optimal angles that can be used to set the AIM circuits. As described in our [paper](https://arxiv.org/abs/2412.07670), the associated restricted Hamiltonian for our SIAM can be reduced to,
$$
\begin{equation}
H_{(U, V)} = U (Z_0 Z_2 - 1) / 4 + V (X_0 + X_2),
\end{equation}
$$
where $U$ is the Coulomb interaction and $V$ the hybridization strength. In this notebook workflow, we will optimize over a 2-dimensional grid of Hamiltonian parameter values, namely $U\in \{1, 5, 9\}$ and $V\in \{-9, -1, 7\}$ (with all values assumed to be in units of eV), to ensure that the ansatz is generally trainable and expressive, and obtain 9 different circuit layers identified by the key $(U, V)$. We will simulate the VQE on GPU (or optionally on CPU if you do not have GPU access), enabled by CUDA-Q, in the absence of noise:
"""
if cudaq.num_available_gpus() == 0:
cudaq.set_target("qpp-cpu", option="fp64")
print("Using CPU no Cuda gpu found")
else:
cudaq.set_target("nvidia", option="fp64")
print("Using GPU")
"""This workflow can be easily defined in CUDA-Q as shown in the cell below, using the CUDA-QX Solvers library (which accelerates quantum algorithms like the VQE):"""
def ansatz(n_qubits: int) -> cudaq.Kernel:
# Create a CUDA-Q parameterized kernel
paramterized_ansatz, variational_angles = cudaq.make_kernel(list)
qubits = paramterized_ansatz.qalloc(n_qubits)
# Using |+> as the initial state:
paramterized_ansatz.h(qubits[0])
paramterized_ansatz.cx(qubits[0], qubits[1])
paramterized_ansatz.rx(variational_angles[0], qubits[0])
paramterized_ansatz.cx(qubits[0], qubits[1])
paramterized_ansatz.rz(variational_angles[1], qubits[1])
paramterized_ansatz.cx(qubits[0], qubits[1])
return paramterized_ansatz
def run_logical_vqe(cudaq_hamiltonian: cudaq.SpinOperator) -> tuple[float, list[float]]:
# Set seed for easier reproduction
np.random.seed(42)
# Initial angles for the optimizer
init_angles = np.random.random(2) * 1e-1
# Obtain CUDA-Q Ansatz
num_qubits = cudaq_hamiltonian.get_qubit_count()
variational_kernel = ansatz(num_qubits)
# Perform VQE optimization
energy, params, _ = solvers.vqe(
variational_kernel,
cudaq_hamiltonian,
init_angles,
optimizer=minimize,
method="SLSQP",
tol=1e-10,
)
return energy, params
"""## Constructing circuits in the `[[4,2,2]]` encoding
The `[[4,2,2]]` code is a quantum error detection code that uses four physical qubits to encode two logical qubits. In this notebook, we will construct two variants of quantum circuits: physical (bare, unencoded) and logical (encoded). These circuits will be informed by the Hamiltonian Variational Ansatz described earlier. To measure all the terms in our Hamiltonian, we will measure the data qubits in both the $Z$- and $X$-basis, as allowed by the `[[4,2,2]]` logical gateset. Full details on the circuit constructions are outlined in our [paper](https://arxiv.org/abs/2412.07670).
Below, we create functions to build our CUDA-Q AIM circuits, both physical and logical versions. As we consider noisy simulation in this notebook, we will include some noisy gates. Here, for simplicity, we will just register a custom identity gate -- to be later used as a noisy operation to model readout error:
"""
cudaq.register_operation("meas_id", np.identity(2))
def aim_physical_circuit(
angles: list[float], basis: str, *, ignore_meas_id: bool = False
) -> cudaq.Kernel:
kernel = cudaq.make_kernel()
qubits = kernel.qalloc(2)
# Bell state prep
kernel.h(qubits[0])
kernel.cx(qubits[0], qubits[1])
# Rx Gate
kernel.rx(angles[0], qubits[0])
# ZZ rotation
kernel.cx(qubits[0], qubits[1])
kernel.rz(angles[1], qubits[1])
kernel.cx(qubits[0], qubits[1])
if basis == "z_basis":
if not ignore_meas_id:
kernel.for_loop(
start=0, stop=2, function=lambda q_idx: getattr(kernel, "meas_id")(qubits[q_idx])
)
kernel.mz(qubits)
elif basis == "x_basis":
kernel.h(qubits)
if not ignore_meas_id:
kernel.for_loop(
start=0, stop=2, function=lambda q_idx: getattr(kernel, "meas_id")(qubits[q_idx])
)
kernel.mz(qubits)
else:
raise ValueError("Unsupported basis provided:", basis)
return kernel
def aim_logical_circuit(
angles: list[float], basis: str, *, ignore_meas_id: bool = False
) -> cudaq.Kernel:
kernel = cudaq.make_kernel()
qubits = kernel.qalloc(6)
kernel.for_loop(start=0, stop=3, function=lambda idx: kernel.h(qubits[idx]))
kernel.cx(qubits[1], qubits[4])
kernel.cx(qubits[2], qubits[3])
kernel.cx(qubits[0], qubits[1])
kernel.cx(qubits[0], qubits[3])
# Rx teleportation
kernel.rx(angles[0], qubits[0])
kernel.cx(qubits[0], qubits[1])
kernel.cx(qubits[0], qubits[3])
kernel.h(qubits[0])
if basis == "z_basis":
if not ignore_meas_id:
kernel.for_loop(
start=0, stop=5, function=lambda idx: getattr(kernel, "meas_id")(qubits[idx])
)
kernel.mz(qubits)
elif basis == "x_basis":
# ZZ rotation and teleportation
kernel.cx(qubits[3], qubits[5])
kernel.cx(qubits[2], qubits[5])
kernel.rz(angles[1], qubits[5])
kernel.cx(qubits[1], qubits[5])
kernel.cx(qubits[4], qubits[5])
kernel.for_loop(start=1, stop=5, function=lambda idx: kernel.h(qubits[idx]))
if not ignore_meas_id:
kernel.for_loop(
start=0, stop=6, function=lambda idx: getattr(kernel, "meas_id")(qubits[idx])
)
kernel.mz(qubits)
else:
raise ValueError("Unsupported basis provided:", basis)
return kernel
"""With the circuit definitions above, we can now define a function that automatically runs the VQE and constructs a dictionary containing all the AIM circuits we want to submit to hardware (or noisily simulate):"""
def generate_circuit_set(ignore_meas_id: bool = False) -> object:
u_vals = [1, 5, 9]
v_vals = [-9, -1, 7]
circuit_dict = {}
for u in u_vals:
for v in v_vals:
qubit_hamiltonian = (
0.25 * u * cudaq.spin.z(0) * cudaq.spin.z(1)
- 0.25 * u
+ v * cudaq.spin.x(0)
+ v * cudaq.spin.x(1)
)
_, opt_params = run_logical_vqe(qubit_hamiltonian)
angles = [float(angle) for angle in opt_params]
print(f"Computed optimal angles={angles} for U={u}, V={v}")
tmp_physical_dict = {}
tmp_logical_dict = {}
for basis in ("z_basis", "x_basis"):
tmp_physical_dict[basis] = aim_physical_circuit(
angles, basis, ignore_meas_id=ignore_meas_id
)
tmp_logical_dict[basis] = aim_logical_circuit(
angles, basis, ignore_meas_id=ignore_meas_id
)
circuit_dict[f"{u}:{v}"] = {
"physical": tmp_physical_dict,
"logical": tmp_logical_dict,
}
print("\nFinished building optimized circuits!")
return circuit_dict
sim_circuit_dict = generate_circuit_set()
circuit_layers = sim_circuit_dict.keys()
"""## Setting up submission and decoding workflow
In this section, we define various helper functions that will play a role in generating the associated energies of the AIM circuits based on the circuit samples (in the different bases), as well as decode the logical circuits with post-selection informed by the `[[4,2,2]]` code:
"""
def _num_qubits(counts: Mapping[str, float]) -> int:
for key in counts:
if key.isdecimal():
return len(key)
return 0
def process_counts(
counts: Mapping[str, float],
data_qubits: Sequence[int],
flag_qubits: Sequence[int] = (),
) -> dict[str, float]:
new_data: dict[str, float] = {}
for key, val in counts.items():
if not all(key[i] == "0" for i in flag_qubits):
continue
new_key = "".join(key[i] for i in data_qubits)
if not set("01").issuperset(new_key):
continue
new_data.setdefault(new_key, 0)
new_data[new_key] += val
return new_data
def decode(counts: Mapping[str, float]) -> dict[str, float]:
"""Decode physical counts into logical counts. Should be called after `process_counts`."""
if not counts:
return {}
num_qubits = _num_qubits(counts)
assert num_qubits % 4 == 0
physical_to_logical = {
"0000": "00",
"1111": "00",
"0011": "01",
"1100": "01",
"0101": "10",
"1010": "10",
"0110": "11",
"1001": "11",
}
new_data: dict[str, float] = {}
for key, val in counts.items():
physical_keys = [key[i : i + 4] for i in range(0, num_qubits, 4)]
logical_keys = [physical_to_logical.get(physical_key) for physical_key in physical_keys]
if None not in logical_keys:
new_key = "".join(logical_keys)
new_data.setdefault(new_key, 0)
new_data[new_key] += val
return new_data
def ev_x(counts: Mapping[str, float]) -> float:
ev = 0.0
for k, val in counts.items():
ev += val * ((-1) ** int(k[0]) + (-1) ** int(k[1]))
total = sum(counts.values())
ev /= total
return ev
def ev_xx(counts: Mapping[str, float]) -> float:
ev = 0.0
for k, val in counts.items():
ev += val * (-1) ** k.count("1")
total = sum(counts.values())
ev /= total
return ev
def ev_zz(counts: Mapping[str, float]) -> float:
ev = 0.0
for k, val in counts.items():
ev += val * (-1) ** k.count("1")
total = sum(counts.values())
ev /= total
return ev
def aim_logical_energies(
data_ordering: object, counts_list: Sequence[dict[str, float]]
) -> tuple[dict[tuple[int, int], float], dict[tuple[int, int], float]]:
counts_data = {
data_ordering[i]: decode(
process_counts(
counts,
data_qubits=[1, 2, 3, 4],
flag_qubits=[0, 5],
)
)
for i, counts in enumerate(counts_list)
}
return _aim_energies(counts_data)
def aim_physical_energies(
data_ordering: object, counts_list: Sequence[dict[str, float]]
) -> tuple[dict[tuple[int, int], float], dict[tuple[int, int], float]]:
counts_data = {
data_ordering[i]: process_counts(
counts,
data_qubits=[0, 1],
)
for i, counts in enumerate(counts_list)
}
return _aim_energies(counts_data)
def _aim_energies(
counts_data: Mapping[tuple[int, int, str], dict[str, float]],
) -> tuple[dict[tuple[int, int], float], dict[tuple[int, int], float]]:
evxs: dict[tuple[int, int], float] = {}
evxxs: dict[tuple[int, int], float] = {}
evzzs: dict[tuple[int, int], float] = {}
totals: dict[tuple[int, int], float] = {}
for key, counts in counts_data.items():
h_params, basis = key
key_a, key_b = h_params.split(":")
u, v = int(key_a), int(key_b)
if basis.startswith("x"):
evxs[u, v] = ev_x(counts)
evxxs[u, v] = ev_xx(counts)
else:
evzzs[u, v] = ev_zz(counts)
totals.setdefault((u, v), 0)
totals[u, v] += sum(counts.values())
energies = {}
uncertainties = {}
for u, v in evxs.keys() & evzzs.keys():
string_key = f"{u}:{v}"
energies[string_key] = u * (evzzs[u, v] - 1) / 4 + v * evxs[u, v]
uncertainty_xx = 2 * v**2 * (1 + evxxs[u, v]) - u * v * evxs[u, v] / 2
uncertainty_zz = u**2 * (1 - evzzs[u, v]) / 2
uncertainties[string_key] = np.sqrt(
(uncertainty_zz + uncertainty_xx - energies[string_key] ** 2) / (totals[u, v] / 2)
)
return energies, uncertainties
def _get_energy_diff(
bf_energies: dict[str, float],
physical_energies: dict[str, float],
logical_energies: dict[str, float],
) -> tuple[list[float], list[float]]:
physical_energy_diff = []
logical_energy_diff = []
# Data ordering following `bf_energies` keys
for layer in bf_energies.keys():
physical_sim_energy = physical_energies[layer]
logical_sim_energy = logical_energies[layer]
true_energy = bf_energies[layer]
u, v = layer.split(":")
print(f"Layer=({u}, {v}) has brute-force energy of: {true_energy}")
print(f"Physical circuit of layer=({u}, {v}) got an energy of: {physical_sim_energy}")
print(f"Logical circuit of layer=({u}, {v}) got an energy of: {logical_sim_energy}")
print("-" * 72)
if logical_sim_energy < physical_sim_energy:
print("Logical circuit achieved the lower energy!")
else:
print("Physical circuit achieved the lower energy")
print("-" * 72, "\n")
physical_energy_diff.append(
-1 * (true_energy - physical_sim_energy)
) # Multiply by -1 since negative energies
logical_energy_diff.append(-1 * (true_energy - logical_sim_energy))
return physical_energy_diff, logical_energy_diff
def submit_aim_circuits(
circuit_dict: object,
*,
folder_path: str = "future_aim_results",
shots_count: int = 1000,
noise_model: cudaq.mlir._mlir_libs._quakeDialects.cudaq_runtime.NoiseModel | None = None,
run_async: bool = False,
) -> dict[str, list[dict[str, int]]] | None:
if run_async:
os.makedirs(folder_path, exist_ok=True)
else:
aim_results = {"physical": [], "logical": []}
for layer in circuit_dict.keys():
if run_async:
print(f"Posting circuits associated with layer=('{layer}')")
else:
print(f"Running circuits associated with layer=('{layer}')")
for basis in ("z_basis", "x_basis"):
if run_async:
u, v = layer.split(":")
tmp_physical_results = cudaq.sample_async(
circuit_dict[layer]["physical"][basis], shots_count=shots_count
)
file = open(f"{folder_path}/physical_{basis}_job_u={u}_v={v}_result.txt", "w")
file.write(str(tmp_physical_results))
file.close()
tmp_logical_results = cudaq.sample_async(
circuit_dict[layer]["logical"][basis], shots_count=shots_count
)
file = open(f"{folder_path}/logical_{basis}_job_u={u}_v={v}_result.txt", "w")
file.write(str(tmp_logical_results))
file.close()
else:
tmp_physical_results = cudaq.sample(
circuit_dict[layer]["physical"][basis],
shots_count=shots_count,
noise_model=noise_model,
)
tmp_logical_results = cudaq.sample(
circuit_dict[layer]["logical"][basis],
shots_count=shots_count,
noise_model=noise_model,
)
aim_results["physical"].append({k: v for k, v in tmp_physical_results.items()})
aim_results["logical"].append({k: v for k, v in tmp_logical_results.items()})
if not run_async:
print("\nCompleted all circuit sampling!")
return aim_results
else:
print("\nAll circuits submitted for async sampling!")
def _get_async_results(
layers: object, *, folder_path: str = "future_aim_results"
) -> dict[str, list[dict[str, int]]]:
aim_results = {"physical": [], "logical": []}
for layer in layers:
print(f"Retrieving all circuits counts associated with layer=('{layer}')")
u, v = layer.split(":")
for basis in ("z_basis", "x_basis"):
file = open(f"{folder_path}/physical_{basis}_job_u={u}_v={v}_result.txt", "r")
tmp_physical_results = cudaq.AsyncSampleResult(str(file.read()))
physical_counts = tmp_physical_results.get()
file = open(f"{folder_path}/logical_{basis}_job_u={u}_v={v}_result.txt", "r")
tmp_logical_results = cudaq.AsyncSampleResult(str(file.read()))
logical_counts = tmp_logical_results.get()
aim_results["physical"].append({k: v for k, v in physical_counts.items()})
aim_results["logical"].append({k: v for k, v in logical_counts.items()})
print("\nObtained all circuit samples!")
return aim_results
"""## Running a CUDA-Q noisy simulation
In this section, we will first explore the performance of the physical and logical circuits under the influence of a device noise model. This will help us predict experimental results, as well as understand the dominant error sources at play. Such a simulation can be achieved via CUDA-Q's density matrix simulator:
"""
cudaq.reset_target()
cudaq.set_target("density-matrix-cpu")
def get_device_noise(
depolar_prob_1q: float,
depolar_prob_2q: float,
*,
readout_error_prob: float | None = None,
custom_gates: list[str] | None = None,
) -> cudaq.mlir._mlir_libs._quakeDialects.cudaq_runtime.NoiseModel:
noise = cudaq.NoiseModel()
depolar_noise = cudaq.DepolarizationChannel(depolar_prob_1q)
noisy_ops = ["z", "s", "x", "h", "rx", "rz"]
for op in noisy_ops:
noise.add_all_qubit_channel(op, depolar_noise)
if custom_gates:
custom_depolar_channel = cudaq.DepolarizationChannel(depolar_prob_1q)
for op in custom_gates:
noise.add_all_qubit_channel(op, custom_depolar_channel)
# Two qubit depolarization error
p_0 = 1 - depolar_prob_2q
p_1 = np.sqrt((1 - p_0**2) / 3)
k0 = np.array(
[[p_0, 0.0, 0.0, 0.0], [0.0, p_0, 0.0, 0.0], [0.0, 0.0, p_0, 0.0], [0.0, 0.0, 0.0, p_0]],
dtype=np.complex128,
)
k1 = np.array(
[[0.0, 0.0, p_1, 0.0], [0.0, 0.0, 0.0, p_1], [p_1, 0.0, 0.0, 0.0], [0.0, p_1, 0.0, 0.0]],
dtype=np.complex128,
)
k2 = np.array(
[
[0.0, 0.0, -1j * p_1, 0.0],
[0.0, 0.0, 0.0, -1j * p_1],
[1j * p_1, 0.0, 0.0, 0.0],
[0.0, 1j * p_1, 0.0, 0.0],
],
dtype=np.complex128,
)
k3 = np.array(
[[p_1, 0.0, 0.0, 0.0], [0.0, p_1, 0.0, 0.0], [0.0, 0.0, -p_1, 0.0], [0.0, 0.0, 0.0, -p_1]],
dtype=np.complex128,
)
kraus_channel = cudaq.KrausChannel([k0, k1, k2, k3])
noise.add_all_qubit_channel("cz", kraus_channel)
noise.add_all_qubit_channel("cx", kraus_channel)
if readout_error_prob is not None:
# Readout error modeled with a Bit flip channel on identity before measurement
bit_flip = cudaq.BitFlipChannel(readout_error_prob)
noise.add_all_qubit_channel("meas_id", bit_flip)
return noise
"""Finally, with our example noise model defined above, we can synchronously & noisily sample all of our AIM circuits by passing `noise_model=cudaq_noise_model` to the workflow containing function `submit_aim_circuits()`:"""
# Example parameters that can model execution on hardware at the high, simulation, level:
# Take single-qubit gate depolarization rate: ~0.2% or better (fidelity β₯99.8%)
# Take two-qubit gate depolarization rate: ~1β2% (fidelity ~98β99%)
cudaq_noise_model = get_device_noise(0.002, 0.02, readout_error_prob=0.02)
aim_sim_data = submit_aim_circuits(sim_circuit_dict, noise_model=cudaq_noise_model)
data_ordering = []
for key in circuit_layers:
for basis in ("z_basis", "x_basis"):
data_ordering.append((key, basis))
sim_physical_energies, sim_physical_uncertainties = aim_physical_energies(
data_ordering, aim_sim_data["physical"]
)
sim_logical_energies, sim_logical_uncertainties = aim_logical_energies(
data_ordering, aim_sim_data["logical"]
)
"""To analyze our simulated energy results in the above cells, we will compare them to the brute-force computed exact ground state energies for the AIM Hamiltonian. For simplicity, these are already stored in the dictionary `bf_energies` below:"""
bf_energies = {
"1:-9": -18.251736027394713,
"1:-1": -2.265564437074638,
"1:7": -14.252231964940428,
"5:-9": -19.293350575766127,
"5:-1": -3.608495283014149,
"5:7": -15.305692796870582,
"9:-9": -20.39007993367173,
"9:-1": -5.260398644698076,
"9:7": -16.429650912487233,
}
"""With the above metric, we can assess the performance of the logical circuits against the physical circuits by considering how far away the respective energies are from the brute-force expected energies. The cell below computes these energy deviations:"""
sim_physical_energy_diff, sim_logical_energy_diff = _get_energy_diff(
bf_energies, sim_physical_energies, sim_logical_energies
)
"""Both physical and logical circuits were subject to the same noise model, but the `[[4,2,2]]` provides additional information that can help overcome some errors. Visualizing the computed energy differences from the above the cell, our noisy simulation provides a preview of the benefits logical qubits can offer:"""
# Diagnostic block because next code block was getting stuck and throwing many errors
print("=== Creating layer labels ===")
layer_labels = [(int(key.split(":")[0]), int(key.split(":")[1])) for key in bf_energies.keys()]
print("=== ge nerating strings ===")
plot_labels = [str(item) for item in layer_labels]
print("=== Variable Type Check ===")
print(f"Type of sim_physical_energy_diff: {type(sim_physical_energy_diff)}")
print(f"Type of sim_physical_uncertainties: {type(sim_physical_uncertainties)}")
print("\n=== Values Preview ===")
print(f"bf_energies keys: {list(bf_energies.keys())[:5]}...") # First 5 keys
print(f"layer_labels: {layer_labels[:5]}...") # First 5 labels
print("\n=== Shape/Length Check ===")
print(f"Length of plot_labels: {len(plot_labels)}")
print(f"Length of sim_physical_energy_diff: {len(sim_physical_energy_diff) if hasattr(sim_physical_energy_diff, 'len') else 'N/A'}")
print(f"Number of uncertainties: {len(sim_physical_uncertainties.values()) if hasattr(sim_physical_uncertainties.values(), 'len') else 'N/A'}")
sim_physical_energy_diff
print("=== Examining sim_physical_uncertainties ===")
print(f"Type: {type(sim_physical_uncertainties)}")
print("\nFirst few key-value pairs:")
for i, (key, value) in enumerate(sim_physical_uncertainties.items()):
if i < 5: # Show first 5 items
print(f"{key}: {value}")
else:
break
print("\n=== Examining sim_physical_energy_diff ===")
print(f"Type: {type(sim_physical_energy_diff)}")
if hasattr(sim_physical_energy_diff, '__iter__'):
print("First few values:")
try:
print(list(sim_physical_energy_diff)[:5])
except:
print("Could not convert to list")
# Convert uncertainties to a list of values
physical_uncertainties = list(sim_physical_uncertainties.values())
logical_uncertainties = list(sim_logical_uncertainties.values())
# Convert energy differences if needed
if isinstance(sim_physical_energy_diff, dict):
energy_diff = list(sim_physical_energy_diff.values())
else:
energy_diff = sim_physical_energy_diff
fig, ax = plt.subplots(figsize=(11, 7), dpi=200)
print("1")
layer_labels = [(int(key.split(":")[0]), int(key.split(":")[1])) for key in bf_energies.keys()]
plot_labels = [str(item) for item in layer_labels]
print("here")
plt.errorbar(
plot_labels,
sim_physical_energy_diff,
yerr=physical_uncertainties,
ecolor=(20 / 255.0, 26 / 255.0, 94 / 255.0),
color=(20 / 255.0, 26 / 255.0, 94 / 255.0),
capsize=4,
elinewidth=1.5,
fmt="o",
markersize=8,
markeredgewidth=1,
label="Physical",
)
print("2")
plt.errorbar(
plot_labels,
sim_logical_energy_diff,
yerr=logical_uncertainties,
color=(0, 177 / 255.0, 152 / 255.0),
ecolor=(0, 177 / 255.0, 152 / 255.0),
capsize=4,
elinewidth=1.5,
fmt="o",
markersize=8,
markeredgewidth=1,
label="Logical",
)
print("3")
ax.set_xlabel("Hamiltonian Parameters (U, V)", fontsize=18)
ax.set_ylabel("Energy above true ground state (in eV)", fontsize=18)
ax.set_title("CUDA-Q AIM Circuits Simulation (lower is better)", fontsize=20)
ax.legend(loc="upper right", fontsize=18.5)
plt.xticks(fontsize=16)
plt.yticks(fontsize=16)
print("4")
ax.axhline(y=0, color="black", linestyle="--", linewidth=2)
plt.ylim(
top=max(sim_physical_energy_diff) + max(sim_physical_uncertainties.values()) + 0.2, bottom=-0.2
)
print("5")
plt.tight_layout()
plt.show() |