Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,641 Bytes
0f5f6d3 876ad06 0f5f6d3 876ad06 0f5f6d3 876ad06 0f5f6d3 876ad06 0f5f6d3 876ad06 0f5f6d3 876ad06 0f5f6d3 876ad06 0f5f6d3 bd11228 0f5f6d3 899a4d8 0f5f6d3 2a24c63 0f5f6d3 2a24c63 0f5f6d3 2a24c63 0f5f6d3 2a24c63 0f5f6d3 2a24c63 0f5f6d3 2a24c63 0f5f6d3 2a24c63 0f5f6d3 899a4d8 9d6ef8d 0f5f6d3 9d6ef8d 0f5f6d3 9d6ef8d 0f5f6d3 9d6ef8d e0fff0e 0f5f6d3 842b0e1 876ad06 9d6ef8d 842b0e1 7189b3c 842b0e1 7189b3c 842b0e1 876ad06 842b0e1 e0fff0e 842b0e1 0f5f6d3 9d6ef8d 899a4d8 842b0e1 899a4d8 876ad06 899a4d8 842b0e1 899a4d8 842b0e1 876ad06 842b0e1 3045ca3 842b0e1 3045ca3 842b0e1 3045ca3 842b0e1 3045ca3 842b0e1 3045ca3 842b0e1 3045ca3 842b0e1 9d6ef8d 842b0e1 9d6ef8d 842b0e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
"""
quantum_utils.py
Helper library for running a simplified VQE or quantum simulation
that references CUDA-Q for computations.
References:
- @Cuda-Q_install.md for installation details
- @VQE_Example.md for example VQE code using nvidia or nvidia-mqpu backend
"""
import cudaq
import cudaq_solvers as solvers # Import solvers from cudaq_solvers package
import numpy as np
from scipy.optimize import minimize
import spaces
from typing import Dict, List, Union, Any, Tuple
import sys
import logging
import os
from logging.handlers import RotatingFileHandler
import openfermion
import openfermionpyscf
from openfermion.transforms import jordan_wigner, get_fermion_operator
# Create logs directory if it doesn't exist
os.makedirs('logs', exist_ok=True)
# Create formatters
file_formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
console_formatter = logging.Formatter('%(levelname)s - %(message)s')
# Set up file handler with rotation
file_handler = RotatingFileHandler(
'logs/vqe_simulation.log',
maxBytes=10*1024*1024, # 10MB
backupCount=5
)
file_handler.setFormatter(file_formatter)
file_handler.setLevel(logging.DEBUG)
# Set up console handler with less verbose output
console_handler = logging.StreamHandler()
console_handler.setFormatter(console_formatter)
console_handler.setLevel(logging.INFO) # Only show INFO and above in console
# Configure logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# Remove any existing handlers
for handler in logger.handlers[:]:
logger.removeHandler(handler)
# Add our handlers
logger.addHandler(file_handler)
logger.addHandler(console_handler)
# Log startup message
logger.info("VQE Simulation module initialized")
print("quantum_utils imported", file=sys.stderr, flush=True)
def setup_target():
"""Set up CUDA-Q target based on available hardware."""
try:
print("Setting up target...", file=sys.stderr, flush=True)
gpu_count = cudaq.num_available_gpus()
print(f"Number of available GPUs: {gpu_count}", file=sys.stderr, flush=True)
if gpu_count > 0:
print("Attempting to set NVIDIA GPU target...", file=sys.stderr, flush=True)
cudaq.set_target("nvidia")
print("Successfully set NVIDIA GPU target", file=sys.stderr, flush=True)
else:
print("No GPU found, attempting to set CPU target...", file=sys.stderr, flush=True)
cudaq.set_target("qpp-cpu")
print("Successfully set CPU target", file=sys.stderr, flush=True)
except Exception as e:
print(f"Error setting up quantum target: {str(e)}", file=sys.stderr, flush=True)
import traceback
print(f"Traceback:\n{traceback.format_exc()}", file=sys.stderr, flush=True)
raise
def vqe_callback(xk):
"""Callback function for VQE optimization to track progress."""
try:
logging.info(f"VQE iteration - Current parameters: {xk}")
return True
except Exception as e:
logging.error(f"Error in VQE callback: {str(e)}")
return False
def validate_ansatz(kernel_generator, init_params, qubit_num, electron_num):
"""Validate the ansatz kernel before VQE."""
try:
logging.debug("Validating ansatz kernel...")
# Set up target before validation
setup_target()
# Generate the kernel with the correct number of qubits and electrons
kernel = kernel_generator(qubit_num, electron_num)
# Log the types and values of parameters and qubits
logging.debug(f"Kernel parameters type: {type(init_params)}, values: {init_params}")
logging.debug(f"Kernel qubits type: {type(qubit_num)}, value: {qubit_num}")
logging.debug(f"Kernel electrons type: {type(electron_num)}, value: {electron_num}")
# Try running the kernel with initial parameters
result = cudaq.sample(kernel, init_params.tolist()) # Convert to list for validation
logging.debug(f"Ansatz validation successful. Sample result: {result}")
return True
except Exception as e:
logging.error(f"Ansatz validation failed: {str(e)}")
return False
# ----------------------------------------------------------
# New or updated utility function for generating a Hamiltonian
# ----------------------------------------------------------
def create_molecular_hamiltonian(geometry: list[tuple[str, tuple[float, float, float]]],
basis: str,
multiplicity: int,
charge: int) -> cudaq.SpinOperator:
"""
Create a SpinOperator for a given molecule using PySCF + OpenFermion + CUDA-Q.
Parameters
----------
geometry : list of (str, (float, float, float)))
List describing each atom, e.g. [('H', (0.,0.,0.)), ('H',(0.,0.,bond_length))]
basis : str
Basis set, e.g. "sto-3g"
multiplicity : int
Spin multiplicity
charge : int
Net charge of the molecule
Returns
-------
cudaq.SpinOperator
The qubit Hamiltonian in CUDA-Q spin-operator form.
"""
try:
# Set up the CUDA-Q target for GPU acceleration
setup_target()
# Use PySCF + OpenFermion to build a molecular object
molecule = openfermionpyscf.run_pyscf(
openfermion.MolecularData(geometry, basis, multiplicity, charge)
)
# Construct the fermionic Hamiltonian
molecular_hamiltonian = molecule.get_molecular_hamiltonian()
fermion_hamiltonian = get_fermion_operator(molecular_hamiltonian)
qubit_hamiltonian = jordan_wigner(fermion_hamiltonian)
# Convert to CUDA-Q SpinOperator
spin_op = cudaq.SpinOperator(qubit_hamiltonian)
return spin_op
except Exception as e:
logging.error(f"Failed to create molecular Hamiltonian: {str(e)}")
raise
# ----------------------------------------------------------
# New or updated function for generating a UCCSD ansatz kernel
# ----------------------------------------------------------
@cudaq.kernel #required to create the kernel object for Nvidia
def kernel(qubit_num: int, electron_num: int, thetas: list[float]):
"""
Generate a UCCSD ansatz kernel given the number of qubits and electrons.
Parameters
----------
qubit_num : int
Number of qubits in the system
electron_num : int
Number of electrons (which is the same as number of X gates for HF ref.)
Returns
-------
A CUDA-Q kernel that accepts parameters for the UCCSD ansatz.
"""
qubits = cudaq.qvector(qubit_num)
# Prepare the Hartree-Fock reference: X on each occupied orbital
for i in range(electron_num):
x(qubits[i]) # Apply X gate to each occupied orbital it is defined in the cuda kernel decorator space
# Add the UCCSD terms
cudaq.kernels.uccsd(qubits, thetas, electron_num, qubit_num)
# define the cost function as the observation of the spin_hamiltonian w.r.t. the ansatz
def cost_function(kernel, spin_hamiltonian, qubit_count, electron_count, thetas):
# The "cost" is the expectation of the spin_operator w.r.t. the ansatz, for these params
exp_val = cudaq.observe(kernel, spin_hamiltonian, qubit_count, electron_count, thetas).expectation()
logging.info(f"Cost function evaluation: {exp_val:.6f}")
return exp_val
def expand_geometry(geometry_template: List[List[Any]], scale_factor: float) -> List[Tuple[str, Tuple[float, float, float]]]:
"""
Expand or contract a molecule's geometry by a scale factor.
Args:
geometry_template: List of [atom_symbol, [x, y, z]] coordinates
scale_factor: Factor to scale the geometry by (1.0 = no change)
Returns:
List of (atom_symbol, (x, y, z)) tuples with scaled coordinates
"""
scaled_geometry = []
logging.debug("expand_geometry: Starting with scale_factor=%f", scale_factor)
logging.debug("expand_geometry: Input geometry_template=%s", geometry_template)
# Find the center of mass (assuming equal weights for simplicity)
coords = np.array([coord for _, coord in geometry_template])
logging.debug("expand_geometry: Computed coordinates array: %s", coords)
center = np.mean(coords, axis=0)
logging.debug("expand_geometry: Computed center of mass: %s", center)
for atom_symbol, coord in geometry_template:
# Convert coord to numpy array for vector operations
coord = np.array(coord)
logging.debug("expand_geometry: Processing atom: %s", atom_symbol)
logging.debug("expand_geometry: Original coordinate: %s", coord)
# Calculate vector from center
vec = coord - center
logging.debug("expand_geometry: Computed vector from center: %s", vec)
# Scale the vector and add back to center
scaled_coord = center + vec * scale_factor
logging.debug("expand_geometry: Scaled coordinate: %s", scaled_coord)
# Convert back to tuple
scaled_geometry.append((atom_symbol, tuple(scaled_coord)))
logging.debug("expand_geometry: Final scaled geometry: %s", scaled_geometry)
return scaled_geometry
def generate_hamiltonian(molecule_data: Dict[str, Any],
scale_factor: float) -> Dict[str, Any]:
"""
Generate the Hamiltonian and its parameters for a given molecule without running VQE optimization.
Parameters
----------
molecule_data : Dict[str, Any]
Dictionary containing all molecule metadata and parameters
scale_factor : float
Factor to scale the molecule geometry by (1.0 = original size)
Returns
-------
Dict[str, Any]
Dictionary containing Hamiltonian information:
- 'hamiltonian': The CUDA-Q SpinOperator Hamiltonian
- 'qubit_count': Number of qubits needed
- 'electron_count': Number of electrons in the system
- 'parameter_count': Number of UCCSD parameters needed
- 'hamiltonian_terms': Number of terms in the Hamiltonian
- 'circuit_latex': LaTeX representation of the quantum circuit
"""
# Get GPU time from molecule data or use default
gpu_time = molecule_data.get('GPU_time', 60)
logger.info(f"Generating Hamiltonian with GPU time: {gpu_time}")
def _generate_hamiltonian_inner():
logging.info(f"Generating Hamiltonian for {molecule_data['name']} with scale factor {scale_factor}")
# Set up the CUDA-Q target
setup_target()
# Create scaled geometry
geometry = expand_geometry(molecule_data['geometry_template'], scale_factor)
logging.info(f"Created scaled geometry with factor = {scale_factor}")
# Generate the Hamiltonian
spin_hamiltonian = create_molecular_hamiltonian(
geometry=geometry,
basis=molecule_data['basis'],
multiplicity=molecule_data['multiplicity'],
charge=molecule_data['charge']
)
# Get Hamiltonian info
term_count = spin_hamiltonian.get_term_count()
logging.debug(f"Hamiltonian has {term_count} terms.")
# Commented out because it's too much info to show in the logs
# logging.debug(f"Hamiltonian details:\n{spin_hamiltonian}")
# Get system parameters
qubit_count = 2 * molecule_data['spatial_orbitals']
electron_count = molecule_data['electron_count']
# Compute UCCSD parameters needed
parameter_count = cudaq.kernels.uccsd_num_parameters(electron_count, qubit_count)
logging.info(f"Number of UCCSD parameters needed = {parameter_count}")
# Generate LaTeX representation of the circuit
try:
logging.info("Starting circuit LaTeX generation")
thetas_draw = np.random.normal(0, 1, parameter_count)
# Draw the circuit in fancy nice stuff
circuit_latex = cudaq.draw(kernel, qubit_count, electron_count, thetas_draw)
# Limit circuit output size
MAX_CIRCUIT_LENGTH = 15000
if len(circuit_latex) > MAX_CIRCUIT_LENGTH:
circuit_latex = circuit_latex[:MAX_CIRCUIT_LENGTH] + "\n... (circuit visualization clipped for size)"
logging.info("Successfully generated circuit LaTeX representation")
logging.debug(f"Circuit LaTeX length: {len(circuit_latex)} characters")
except Exception as e:
logging.error(f"Failed to generate circuit LaTeX: {str(e)}")
circuit_latex = "Error generating circuit visualization"
return {
'hamiltonian': spin_hamiltonian,
'qubit_count': qubit_count,
'electron_count': electron_count,
'parameter_count': parameter_count,
'hamiltonian_terms': term_count,
'circuit_latex': circuit_latex
}
return _generate_hamiltonian_inner()
def run_vqe_simulation(molecule_data: Dict[str, Any],
scale_factor: float,
hamiltonian_only: bool = False) -> Dict[str, Any]:
"""
Run a VQE simulation using CUDA-Q.
Parameters
----------
molecule_data : Dict[str, Any]
Dictionary containing all molecule metadata and parameters
scale_factor : float
Factor to scale the molecule geometry by (1.0 = original size)
hamiltonian_only : bool
If True, only generate the Hamiltonian without running VQE optimization
Returns
-------
Dict[str, Any]
The dictionary containing either just Hamiltonian info or full VQE results
"""
# Get GPU time from molecule data or use default
gpu_time = molecule_data.get('GPU_time', 60)
logger.info(f"Running VQE simulation with GPU time: {gpu_time}")
@spaces.GPU(duration=gpu_time)
def _run_vqe_simulation_inner():
setup_target()
# Generate Hamiltonian and get system parameters
logger.info("Generating Hamiltonian")
ham_info = generate_hamiltonian(molecule_data, scale_factor)
# If only Hamiltonian generation is requested, return early
if hamiltonian_only:
return {
'parameter_count': ham_info['parameter_count'],
'hamiltonian_terms': ham_info['hamiltonian_terms'],
'qubit_count': ham_info['qubit_count'],
'electron_count': ham_info['electron_count'],
'message': "Hamiltonian generated successfully",
'circuit_latex': ham_info['circuit_latex']
}
# Get max iterations from molecule data or use default
optimizer_max_iterations = molecule_data.get('iterations', 25)
# Initialize the parameters for the UCCSD ansatz
thetas0 = np.random.normal(0, 1, ham_info['parameter_count'])
logging.info(f"Initial parameters: {thetas0}")
# Create a wrapper function that only takes the parameters to optimize
def objective_wrapper(thetas):
return cost_function(kernel, ham_info['hamiltonian'], ham_info['qubit_count'], ham_info['electron_count'], thetas)
# Define the callback function that uses the wrapper
exp_vals = []
def callback(xk):
val = objective_wrapper(xk)
exp_vals.append(val)
return True
optimization_success = False
optimization_message = ""
final_energy = float("inf")
final_parameters = []
try:
# Test the wrapper function before optimization
test_val = objective_wrapper(thetas0)
logging.info(f"Debug cost check (initial params): {test_val:.6f}")
if not np.isfinite(test_val):
logging.warning("Debug cost check returned non-finite value. The optimizer may fail.")
# Perform the VQE optimization using the wrapper function
result = minimize(objective_wrapper,
thetas0,
method='COBYLA',
callback=callback,
options={'maxiter': optimizer_max_iterations})
# Store optimization results
final_energy = result.fun
final_parameters = result.x
optimization_success = result.success
optimization_message = (
"VQE optimization completed successfully." if result.success
else f"VQE optimization completed with status: {result.message}"
)
except Exception as e:
logging.error(f"VQE optimization error: {str(e)}")
optimization_message = f"VQE optimization error: {str(e)}"
optimization_success = False
logging.info(optimization_message)
logging.debug(f"Final energy: {final_energy}")
logging.debug(f"Optimized parameters: {final_parameters}")
# Build the results dictionary
results = {
"final_energy": float(final_energy),
"parameters": list(final_parameters),
"success": optimization_success,
"iterations": len(exp_vals),
"history": exp_vals,
"message": optimization_message,
"parameter_count": ham_info['parameter_count'],
"hamiltonian_terms": ham_info['hamiltonian_terms']
}
return results
return _run_vqe_simulation_inner() |